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Abstract

FMRI data has become an increasingly popular source for exploring brain activity for a variety of
research purposes. Doing so with automated tools requires the series of images to be aligned as accurately
as possible, accounting for any motion that may have occurred during the scan. This is typically done by
applying a rigid body transformation to each three dimensional image of the series, often done with a Least
Squares cost function as a similarity metric between a given figure and the reference image. However, by
itself, this technique can be biased by outlying voxel intensities caused by random noise during the scan
and, even worse, caused by the very brain activation that is ultimately being detected. Bias in motion
estimation due to activation signals can ultimately result in the detection of false activation regions or
true activation regions remaining undetected. We apply various techniques of Machine Learning to try
and improve upon this algorithm, building on top of common tools when possible.

1 Introduction and approach

The problem of motion correction for fMRI time series is of particular importance for the analysis of brain
activation. As described in [2] there are two main issues with this task. On one hand an accurate realignment
algorithm is needed so that relatively large motions won’t hinder the detection of signal variation due to
brain activity. On the other hand if the brain activation is relatively high it can bias the motion estimate
and possibly result in false activation regions being detected in later steps of the analysis.

In this paper we will turn most of our attention towards the second issue. This issue is known to be
especially severe when using a least-square cost function as a similarity metric between two images.[2] This
is because the L2 norm puts small weight on small residuals but strong weight on large residuals.

We will approach the problem in two ways. First we will investigate whether using image preprocessing
techniques to detect features in the image will help ignoring the effect of bias due to brain activation.
Specifically we will focus on detecting the edge of the brain image and use that to align all images to the
reference. Our second approach will focus on using different cost functions that are less sensitive to outliers
and should thus be less sensitive to high activation signals.

2 Data and Simulations

The fMRI data studied is readily represented as a series of three dimensional matrices. Typically a slice of
size 64x64 voxels, at a depth of 30 slices, over a period of 40 samples was used. Here, the conversion between
voxels and millimetres is a fixed, known quantity. The underlying data at each voxel was a single 16-bit
unsigned integer, representing the intensity at that location.

Obviously in a real fMRI image series the true motion and activation of the subject can not be known
exactly. Instead, all work was done using simulations. A single, fixed three dimensional fMRI scan was
duplicated 40 times, representing a static time series. Then, simulated activation was applied by increasing
the intensity of a select grouping of voxels by a given amount ranging from 0-10%. Finally, we altered the
orientation of a given image by applying an affine transformation to the original image. To best approximate
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true motion, a smooth motion function was used and, to simplify our analysis, it was fixed to be a sine wave.
Similarly, a square wave was chosen for the injected activation profile over our samples.

We explored various combinations of affine motion over the six degrees of freedom, but to ease analysis,
these functions were required to be parametrized by a single value determining the peak motion expressed
over our time series. Likewise, our activation had a single parameter determining the amplitude of the square
wave applied. The overall method used was similar to that of [6].

Finally, all of our work was done in the open source Matlab-based platform SPM. By doing so, we hoped
to both avoid repeating work that others had already done, and also to have a clear channel of distribution
in the event that our work turned out useful results. SPM’s realignment method was a useful baseline for
determining if our injected motion was what we desired.

To investigate different cost functions we used CVX, a package for specifying and solving convex programs
[3, 4], to solve the resulting convex optimization problems.

3 Derivatives of Least Squares

SPM, like many other initiatives that correct for real-world motion over time, uses the method of least squares
to compensate for unwanted movement. Between two given images in the series, the motion is assumed to
be affine, and the correction matrix is computed by solving a linear system of equations for the mapping of
voxels. However, it is known that least squares is sensitive to outliers. Our first intuition was to mask such
outliers.

3.1 Pre-processing of Images

Figure 1(a) shows a typical 2D slice from a 3D fMRI image. It seems apparent that most voxels belonging
to the brain are of relatively high intensity compared to the background. This is clearly demonstrated in
figure 1(c) which shows a histogram of the pixel intensities in the image. Thus a simple way to separate the
background from the brain is to use a clustering algorithm, like K-means with K = 2, to find the means of
the two distributions. Then one can use the results to mask out the entire brain and do the realignment
based on the edge between the two regions.

To further elaborate on this idea we also attempted to use higher values for K. By reducing our color
space to a much lower dimension, our voxels would be more likely to have an intensity equivalent to its coun-
terpart in the realignment process; the activated regions should be indistinguishable from their unactivated
counterparts. With K = 4, for example, we see good distinction between regions of our image, and hence
improved robustness when considering activation levels. On a particular slice, we found our means to be
[1020.7, 2617.8, 4214.9, 5812.0]. These clusters are separated beyond the levels of activation produced in the
brain, which were at most 10% greater than the original value, so we were likely to assign coordinated voxels
to the same cluster whether or not activation was applied.

We discussed several methods of determining clusters, taking into account efficiency and efficacy. Because
we would be mapping voxels across slices and across time samples, we required the cluster values to match
in each image. And, because our simulations were generated off of a single image, we used one image to
determine these values.

We found that the addition of K-Means did achieve our desired result of masking the induced activation;
During our error analysis, there was no indication that activation was present in these series. However, the
loss of detail in the images resulting from applying K-Means introduced substantial error to our least squares
algorithm. Although comparable, our results were typically worse than the standard least squares method.

We explored another intuition for how we could reduce the effect of activation. Rather than applying a
lossy filter to each voxel of each image, we could detect a region of the image that would be readily reconciled
between images, and would also be immune to activation. The boundary region of the brain was a likely
candidate.

We tried several well known edge detection methods, such as Canny and Sobel for our preprocessing.
However, during our K-Means analysis, we saw that the method was acceptable for separating regions of the
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(a) An unaltered slice taken from an
fMRI series.

(b) Simple boundary detection based
on K-Means using 2 clusters.

(c) Histogram of pixel intensities in a
single fMRI scan.

brain from the background, and built a simple boundary detector from there.

4 Different cost functions

The role of the cost function is to assign a value to how well a given image matches to the reference image
given a certain transformation. The most common choice of a cost function in practice, and the one that is
implemented in SPM, is the L2 norm. Other currently used methods are the correlation between images [1]
or Mutual Information [5]. For the purpose of this paper we consider using the L1 norm and the deadzone-
linear penalty function instead of least-squares. The deadzone-linear penalty function puts zero cost on
residuals less than a given value M (which we chose to be 0.04) and is defined as:

φ(x) =
{

0 , x ≤ 0
|x| −M ,x > 0

Both of them put relatively small weight on large residuals and should thus be less sensitive than least-
squares to bias due to activation.

5 Results

Figure 5 shows the results from using all methods on three different cases: little or no motion injected and
high activation (10% peak activation), medium motion and activation (motion factor 6 and peak activation
6%) and a case with high motion but little or no activation (motion factor 10). The motion factor defines
the amplitude of the sine wave motion function injected, thus a motion factor 10 injects a translation of 5
mm, 2.5 mm and 1 mm in x, y, and z direction and 5◦ and 2.5◦ rotation around the x and y axis.

From 1(d) we see that using the L1 norm or the deadzone function as a cost function results in less
sensitivity to high activation compared to using the L2 norm. Furthermore, the boundary detection methods
are more or less immune to the activation as expected since we are masking out the activated brain regions.
For the two cases with higher motion, where bias due to activation is less critical, all methods are mostly
comparable.

While our methods are not perfect, they do provide superior results for the common case where the effect
of activation may outweigh that of motion. With a real time series, it is not possible to determine whether
or not motion is an issue, and our methods protect against introducing bias due to a false correction.
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(d) Mean absolute error results for 10% peak activation and
no motion. Dimensions 1, 2, and 3 are x, y, and z for trans-
lation and roll, pitch, and yaw for rotation.

(e) Results for 6% peak activation and motion parameter 6.

(f) Results for no activation and a motion parameter of 10.
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