
 1

Using Mean Shift for Video Image Segmentation
Joel Darnauer

joeld@stanford.edu
650 714 7688

ABSTRACT

The goal of this project was to develop a fast video image
segmentation routine which could be used as a pre-
processing step for motion tracking. We chose mean shift
[1] as the primary algorithm. Our implementation includes
several enhancements including dynamically adjusting the
kernel bandwidth based on the overall level of image noise,
and keeping a cache of past moves to avoid repeated
computations. The frame rate of the resulting
implementation is still slow due to the quadratic
complextity and iterative nature of the underlying
algorithm, but provides a reasonable starting point for
refinements. We conclude with a discussion of several
limitations of the mean shift as a procedure for image
segmentation and present a couple options for
improvement.

GENERAL PROBLEM FORMULATION
Image segmentation is an important low-level task in
computer vision. As we saw in the homework the k-means
algorithm can be used to compress an image into a reduced
color space that approximately represents the original
image. A robust segmentation could be the first stage in a
object tracking pipeline, and in some ways represents a dual
approach to the more common approach of tracking corner
features.

Informally, we define the video image segmentation
problem as follows.

INPUT:

A set of F input frames containing W x H rgb pixels.

In the nomenclature of the class, the set of training
examples X is x_i:{pos_x, pos_y, t, r, g, b}. Additional
features could be computed (such as converting the color
space from RGB to HSV or other transformations).

In our case we know that each frame covers pos_x and
pos_y, which may lead to some interesting optimizations.

Due to time limitations in the project we were only able to
process frames individually, so the “t” dimension will be
ignored for now.

OUTPUT:
A labeling of each pixel in each frame to a segment-id. In
a real-time algorithm the labeling of segments should be

produced in a causal manner – that is – only the information
in prior frames can be used to assign a label to a object.

Once this basic labeling is produced it should be possible to
produce segmented video with diagnostic output showing
motions of segments. Higher level algorithms could build
upon this system to find intersections between segements an
track multi-segment objects.

An alternative formalation of the segmentation problem
presented in [3] is to consider image space as a 3-
dimensional regular graph between neighboring pixels in
x,y,t. The image segmentation problem consists of
selecting edges in the graph which connect segments, or
additionally of finding a spanning forest of the image graph.
This interpretation will be important for some of our later
optimizations.

Having considered the format of the output, we must now
turn our attention to the properties of the labeling or
spanning forest produced.

Intuitively we want pixels to be labeled in the same
segment if they correspond to the same shaded object from
frame to frame. While subjective pixels in the same
segment should have the following features:

• They are spatially contiguous within the same
frame.

• Should be of similar color, with possible gradients
due to lighting (and optionally texture).

• Between frames there is a simple model of
perspective-like transformations which explain the
trajectory of the 3D surface for the segment, with
allowances for deformation, occlusion and camera
motion.

• A more complicated algorithm might include
terms to compensate for global lighting
fluctuations (flashing lights, camera exposure
changes, etc).

• A very sophisticated algorithm might include
processing to account for motion blur.

A number of these features are beyond the scope of this
class. For this class we will focus initially on the first
problem of segmenting a still image.

 2

THE MEAN SHIFT PARADIGM

Comaniciu [1] use the mean shift algorithm for image
segmentation. Unlike k-means which might use a straight
distance metric to assign pixels to a pre-defined number of
clusters, the mean shift associates each pixel or feature with
some local maximum in the feature density of feature space.
“Feature density” is computed by convolving each feature
in X with a kernel function, typically multivariate gaussian.
The mean shift procedure performs gradient ascent in this
feature density space, so each feature is associated with the
point which is the attractor for the local basin of attraction
that the feature resides in.

But why is this a good choice? Consider an input image
which consists of a gray patch with a uniform gradient in
the x-dimension from light to dark. A human viewer would
attribute this gradient to some natural lighting variation and
would associate all of the pixels in the patch with the same
object. However pixels on the far left and far right of the
patch have relatively large differences in color and spatial
feature dimensions, so a naïve distance function might
classify these pixels to different features. We need a way to
unify these pixels based on the information between them.

Mean shift accomplishes this because in the gradient
example above, the features form a uniform patch in the 5-
dimensional feature space. If the kernel function has a
sufficiently large aperature the maximum of the density will
be at the center of the patch. (Figure 1.)

Figure 1. Blue dots are points in a simplified 2-d feature
space where the vertical axis represents color and the
horizontal axis represents space. In this case the points
form a uniform gradient like the gray patch in the example.
If the kernel function is wider than the patch, the center of
the patch will be attractor. If the kernel function has a
finite radius R then all the points which are further than r
from the edge will have the same local density, and will
therefore be stationary.

Figure 2: A discontinuity in the previous patch produces a
dip in the density function which pushes points away from
the edge. Because the features are uniformly dense in x-y,
the mean shift operator can be thought of as a edge
detector with a resolution determined by the spatial radius
of the kernel.

So the basic mean shift operation is like edge detection and
importantly is stationary for patches with a uniform first
derivative.

The world view of mean shift in some ways is like mixture
of gaussians, in that the modes of the feature density
function are like the centers of the gaussian sources in
MOG. The main difference is that the attractors in MOG
can be very complex in shape. Later we will see that there
are limitations to this view of the problem.

MEAN SHIFT PROCEDURE AND COMPLEXITY

The general mean shift procedure for a feature x_i procedes
as follows:

1. For each feature in x_j in X, compute the distance
d_j = x_j – x_i

2. Apply the kernel function k() to each d_j to
compute the weight for that feature:
w_j = k(d_j)

3. Compute a new x_i’ = Σj w_j x_j / Σj w_j

4. Repeat step 1 with the new x_i’ until |x_i-x_i’| is
within some tolerance delta.

At each update the x_i’ is a weighted sum of the x_i. This
procedure is guaranteed to converge as long as the kernel
function k() is monotonically decreasing and convex.
Typical kernels are guassian functions with some variance
assigned to each dimension.

Two major difficulties with mean shift include the problem
that the basic computation of the kernel distances are O(N2)
in the size of features, and that the number of iterations
required is input dependent. The first advantage can be
addressed by choosing a kernel that decays rapidly in
certain dimensions. In practice the number of iterations for
images is roughly constant and depends on the tolerance
used, among other features.

 3

If the kernel function used has a finite radius R, then the
complexity is more like O(N R2 I) where I is the mean
number of iterations needed for convergence.

POST PROCESSING STEPS

Once the mean shift procedure is performed we have
associated each pixel with an attractor. Especially in the
case of small kernel width R, many points in flat patches
will be stationary and should be associated with each other.
A post processing step is done to merge all 4-connected
clusters of attractors and then points are labeled with the ids
of these superclusters. Further postprocessing operations
like removing clusters below a certain size or minimum
with could be performed at this point, but we avoided this
to see the naked performance of the algorithm.

THE PIPELINE

The steps in the processing pipeline in our implementation
can be seen in figure 3 and 4. This sequence uses a
guassian kernel truncated at R=6 with some of the
optimizations described below.

Figure 3. Processing pipeline for a test image sequence.
Original test image (upper left). Attractors labeled with
brightness in the color of the source image (upper right).
Attractors labeled with the super-cluster after merging
(lower left). Final segmented image (lower right). Some
artifacts are visible in this segmentation due to limitations
of the algorithm.

Figure 4. Same sequence of operations on a real webcam
image.

NOISE OPTIMIZATION

One very important feature of the work was building a
routine which could generate several abitrary test images.
We included a feature that allowed us to add noise to the
images and noticed that the vanilla gaussian kernel
produced rather poor results because it assigned too much
significance to these small fluctuations, especially in large
flat spots.

Figure 5. One improvement over the original mean shift
algorithm was to discount small difference in color as being
insignificant. The normal guassian kernel in color space is
replaced with one with a flat spot whose width depends on
the pixel-to-pixel variances thoughout the source image.

Figure 6. Result of the adaptive noise threshold. Left image
is the standard guassian kernel. Right image is with the
optimization.

flat spot ignores noise regular gaussian

 4

We experimented with several kernels including faster ones
such as 1/d, 1/1+d and k-d. All performed similarly, but we
used the guassian kernel for most of our evaluation because
it is more common and the performance difference were
slight.

OPTIMIZING R

Since the inner loop depends quadratically on the kernel
radius R, it is important to understand what value of R is
necessary. Figure 7 (last page) shows a sweep of some
images with different values of R. Generally a value of
R=5 or R=6 produced reasonable results for our webcam
images.

OPTIMIZING I

Since the mean shift computation moves features to a basin
of attraction, we reasoned that many of these moves are
likely to collect into streams and that it might be possible to
speed up the computation by creating a move cache for the
image. At each step of the mean shift, the cache is
consulted and if the current feature position is within some
distance d from one in the cache, we substitute the stored
move. The cache is efficient because we store only one
move for each xy position, reasoning that colors along a
trajectory are likely to be similar.

There is a slight speedup from this approach because we are
able to match about 30% of moves without noticable
changes in image quality. The amount of additional storing
and branching slows the algorithm down though, so the
overall performance gain is only about 20%.

One interesting side effect of this is that the moves tend to
be from neighboring pixel to neighboring pixel, so the
result is to build up a graph of associations between pixels
much like that in [3].

OVERALL PERFORMANCE

The frame rate of the overall performance is about
1100msec (0.9fps) on 120x160 pixel images for a kernel
radius of 5 and about 8 iterations per pixel. The actual rate
is image dependent, but corresponds to an inner loop time
(computing the distance and kernel weights for each pixel)
of about 90nsec. Since a call to exp() on my machine takes
about 40nsec, this seems like reasonable performance.
More work is needed to improve the inner loop time.

FUTURE DIRECTIONS

There are several interesting directions the project could
take from here:

• There are a number of parameters in the algorithm
which much be manually tweaked, which is quite
unsatisfying. It would be better pehaps to use the
test image procedure to create images with a
known ground truth and then use supervised
learning to create the images. If this is done, other
algorithms such as SVN could be applied to the
problem directly, which might produce much
better results.

• Instead of trying label pixels or edges, the real
problem is perhaps better formulated as finding the
set of shaded polygons which are most likely to
have generated the source image. I’m not sure
what the parameter space of such an algorithm
might look like, but it could also use the
supervised learning approach, training on CG
images from video games and movies.

If you have any interest or advice, please contact me at
joeld@stanford.edu or call me at 650 714 7688.

REFERENCES
1. Dorin Comaniciu and Peter Meer. Mean Shift: A

Robust Approach Toward Feature Space Analysis.
IEEE Trans Pattern Analysis and Machine Intelligence.
2002.

2. D. Comaniciu, V. Ramesh, and P. Meer, "Kernel-based
object tracking," IEEE Trans. Pattern Anal. Machine
Intell., vol. 25, pp. 564--577, 2003.

3. Pedro F. Felzenszwalb and Daniel P. Huttenlocher
International Journal of Computer Vision, Volume 59,
Number 2, September 2004

 5

Figure 8: Selection of kernel radius R (here labeled W) and its effect on segmentation in test and real images. If W is too

small, there is insufficient separation between clusters and bleedthrough defects are common.

