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ABSTRACT 
 

The goal of this project was to develop a fast video image 
segmentation routine which could be used as a pre-
processing step for motion tracking.   We chose mean shift 
[1] as the primary algorithm.  Our implementation includes 
several enhancements including dynamically adjusting the 
kernel bandwidth based on the overall level of image noise, 
and keeping a cache of past moves to avoid repeated 
computations.   The frame rate of the resulting 
implementation is still slow due to the quadratic 
complextity and iterative nature of the underlying 
algorithm, but provides a reasonable starting point for 
refinements.   We conclude with  a discussion of several 
limitations of the mean shift as a procedure for image 
segmentation and present a couple options for 
improvement. 

GENERAL PROBLEM FORMULATION 
Image segmentation is an important low-level task in 
computer vision.  As we saw in the homework the k-means 
algorithm can be used to compress an image into a reduced 
color space that approximately represents the original 
image.   A robust segmentation could be the first stage in a 
object tracking pipeline, and in some ways represents a dual 
approach to the more common approach of tracking corner 
features. 

Informally, we define the video image segmentation 
problem as follows. 

 

INPUT: 

A set of F  input frames containing W x H rgb pixels.   

In the nomenclature of the class, the set of training 
examples X is x_i:{pos_x, pos_y, t, r, g, b}.   Additional 
features could be computed (such as converting the color 
space from RGB to HSV or other transformations). 

In our case we know that each frame covers pos_x and 
pos_y, which may lead to some interesting optimizations.   

Due to time limitations in the project we were only able to 
process frames individually, so the “t” dimension will be 
ignored for now. 

OUTPUT: 
A labeling of each pixel in each frame to a segment-id.   In 
a real-time algorithm the labeling of segments should be 

produced in a causal manner – that is – only the information 
in prior frames can be used to assign a label to a object. 

Once this basic labeling is produced it should be possible to 
produce segmented video with diagnostic output showing 
motions of segments.  Higher level algorithms could build 
upon this system to find intersections between segements an 
track multi-segment objects. 

An alternative formalation of the segmentation problem 
presented in [3] is to consider image space as a 3-
dimensional regular graph between neighboring pixels in 
x,y,t.  The image segmentation problem consists of 
selecting edges in the graph which connect segments, or 
additionally of finding a spanning forest of the image graph. 
This interpretation will be important for some of our later 
optimizations. 

Having considered the format of the output, we must now 
turn our attention to the properties of the labeling or 
spanning forest produced.  

Intuitively we want pixels to be labeled in the same 
segment if they correspond to the same shaded object from 
frame to frame.  While subjective pixels in the same 
segment should have the following features: 

• They are spatially contiguous within the same 
frame. 

• Should be of similar color, with possible gradients 
due to lighting (and optionally texture). 

• Between frames there is  a simple model of 
perspective-like transformations which explain the  
trajectory of the 3D surface for the segment, with 
allowances for deformation, occlusion and camera 
motion. 

• A more complicated algorithm might include 
terms to compensate for global lighting 
fluctuations (flashing lights, camera exposure 
changes, etc). 

• A very sophisticated algorithm might include 
processing to account for motion blur. 

A number of these features are beyond the scope of this 
class.  For this class we will focus initially on the first 
problem of segmenting a still image. 
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THE MEAN SHIFT PARADIGM 

Comaniciu [1] use the mean shift algorithm for image 
segmentation.   Unlike k-means which might use a straight 
distance metric to assign pixels to a pre-defined number of 
clusters, the mean shift associates each pixel or feature with 
some local maximum in the feature density of feature space.  
“Feature density” is computed by convolving each feature 
in X with a kernel function, typically multivariate gaussian.   
The mean shift procedure performs gradient ascent in this 
feature density space, so each feature is associated with the 
point which is the attractor for the local basin of attraction 
that the feature resides in.   

But why is this a good choice?  Consider an input image 
which consists of a gray patch with a uniform gradient in 
the x-dimension from light to dark.  A human viewer would 
attribute this gradient to some natural lighting variation and 
would associate all of the pixels in the patch with the same 
object.  However pixels on the far left and far right of the 
patch have relatively large differences in color and spatial 
feature dimensions, so a naïve distance function might 
classify these pixels to different features.  We need a way to 
unify these pixels based on the information between them.   

Mean shift accomplishes this because in the gradient 
example above, the features form a uniform patch in the 5-
dimensional feature space.  If the kernel function has a 
sufficiently large aperature the maximum of the density will 
be at the center of the patch.  (Figure 1.) 

 

 
Figure 1.  Blue dots are points in a simplified 2-d feature 
space where the vertical axis represents color and the 
horizontal axis represents space.  In this case the points 
form a uniform gradient like the gray patch in the example.  
If the kernel function is wider than the patch, the center of 
the patch will be attractor.  If the kernel function has a 
finite radius R then all the points which are further than r 
from the edge will have the same local density, and will 
therefore be stationary.  

 

 
Figure 2: A discontinuity in the previous patch produces a 
dip in the density function which pushes points away from 
the edge.  Because the features are uniformly dense in x-y, 
the mean shift operator can be thought of as a edge 
detector with a resolution determined by the spatial radius 
of the kernel.  

So the basic mean shift operation is like edge detection and 
importantly is stationary for patches with a uniform first 
derivative. 

The world view of mean shift in some ways is like mixture 
of gaussians, in that the modes of the feature density 
function are like the centers of the gaussian sources in 
MOG.  The main difference is that the attractors in MOG 
can be very complex in shape.  Later we will see that there 
are limitations to this view of the problem. 

 

MEAN SHIFT PROCEDURE AND COMPLEXITY 

The general mean shift procedure for a feature x_i procedes 
as follows: 

1. For each feature in x_j in X, compute the distance 
d_j = x_j – x_i 

2. Apply the kernel function k() to each d_j to 
compute the weight for that feature:  
w_j = k(d_j) 

3. Compute a new x_i’ = Σj w_j x_j / Σj w_j 

4. Repeat step 1 with the new x_i’ until |x_i-x_i’| is 
within some tolerance delta. 

At each update the x_i’ is a weighted sum of the x_i.  This 
procedure is guaranteed to converge as long as the kernel 
function k() is monotonically decreasing and convex.  
Typical kernels are guassian functions with some variance 
assigned to each dimension.  

Two major difficulties with mean shift include the problem 
that the basic computation of the kernel distances are O(N2) 
in the size of features, and that the number of iterations 
required is input dependent.   The first advantage can be 
addressed by choosing a kernel that decays rapidly in 
certain dimensions.  In practice the number of iterations for 
images is roughly constant and depends on the tolerance 
used, among other features. 
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If the kernel function used has a finite radius R, then the 
complexity is more like O(N R2 I) where I is the mean 
number of iterations needed for convergence. 

 

POST PROCESSING STEPS 

Once the mean shift procedure is performed we have 
associated each pixel with an attractor.  Especially in the 
case of small kernel width R, many points in flat patches 
will be stationary and should be associated with each other.  
A post processing step is done to merge all 4-connected 
clusters of attractors and then points are labeled with the ids 
of these superclusters.   Further postprocessing operations 
like removing clusters below a certain size or minimum 
with could be performed at this point, but we avoided this 
to see the naked performance of the algorithm. 

 

THE PIPELINE 

The steps in the processing pipeline in our implementation 
can be seen in figure 3 and 4.  This sequence uses a 
guassian kernel truncated at R=6 with some of the 
optimizations described below. 

 
Figure 3.  Processing pipeline for a test image sequence.  
Original test image (upper left).  Attractors labeled with 
brightness in the color of the source image (upper right).  
Attractors labeled with the super-cluster after merging 
(lower left).  Final segmented image (lower right).  Some 
artifacts are visible in this segmentation due to limitations 
of the algorithm. 

 

 

Figure 4.  Same sequence of operations on a real webcam  
image.   

 

NOISE OPTIMIZATION 

One very important feature of the work was building a 
routine which could generate several abitrary test images.  
We included a feature that allowed us to add noise to the 
images and noticed that the vanilla gaussian kernel 
produced rather poor results because it assigned too much 
significance to these small fluctuations, especially in large 
flat spots.  

 
Figure 5.  One improvement over the original mean shift 
algorithm was to discount small difference in color as being 
insignificant.  The normal guassian kernel in color space is 
replaced with one with a flat spot whose width depends on 
the pixel-to-pixel variances thoughout the source image.  

 
Figure 6. Result of the adaptive noise threshold.  Left image 
is the standard guassian kernel.  Right image is with the 
optimization. 

flat spot ignores noise regular gaussian 
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We experimented with several kernels including faster ones 
such as 1/d, 1/1+d and k-d.  All performed similarly, but we 
used the guassian kernel for most of our evaluation because 
it is more common and the performance difference were 
slight. 

 

OPTIMIZING R 

Since the inner loop depends quadratically on the kernel 
radius R, it is important to understand what value of R is 
necessary.  Figure 7 (last page) shows a sweep of some 
images with different values of R.  Generally a value of 
R=5 or R=6 produced reasonable results for our webcam 
images. 

OPTIMIZING I 

Since the mean shift computation moves features to a basin 
of attraction, we reasoned that many of these moves are 
likely to collect into streams and that it might be possible to 
speed up the computation by creating a move cache for the 
image.  At each step of the mean shift, the cache is 
consulted and if the current feature position is within some 
distance d from one in the cache, we substitute the stored 
move.  The cache is efficient because we store only one 
move for each xy position, reasoning that colors along a 
trajectory are likely to be similar.  

There is a slight speedup from this approach because we are 
able to match about 30% of moves without noticable 
changes in image quality.  The amount of additional storing 
and branching slows the algorithm down though, so the 
overall performance gain is only about 20%. 

One interesting side effect of this is that the moves tend to 
be from neighboring pixel to neighboring pixel, so the 
result is to build up a graph of associations between pixels 
much like that in [3]. 

OVERALL PERFORMANCE 

The frame rate of the overall performance is about 
1100msec (0.9fps) on 120x160 pixel images for a kernel 
radius of 5 and about 8 iterations per pixel.  The actual rate 
is image dependent, but corresponds to an inner loop time 
(computing the distance and kernel weights for each pixel) 
of about 90nsec.  Since a call to exp() on my machine takes 
about 40nsec, this seems like reasonable performance.  
More work is needed to improve the inner loop time.  

 

FUTURE DIRECTIONS 

There are several interesting directions the project could 
take from here: 

• There are a number of parameters in the algorithm 
which much be manually tweaked, which is quite 
unsatisfying.  It would be better pehaps to use the 
test image procedure to create images with a  
known ground truth and then use supervised 
learning to create the images.  If this is done, other 
algorithms such as SVN could be applied to the 
problem directly, which might produce much 
better results. 

• Instead of trying label pixels or edges, the real 
problem is perhaps better formulated as finding the 
set of shaded polygons which are most likely to 
have generated the source image.  I’m not sure 
what the parameter space of such an algorithm 
might look like, but it could also use the 
supervised learning approach, training on CG 
images from video games and movies. 

If you have any interest or advice, please contact me at 
joeld@stanford.edu or call me at 650 714 7688. 
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Figure 8: Selection of kernel radius R (here labeled W) and its effect on segmentation in test and real images.  If W is too 

small, there is insufficient separation between clusters and bleedthrough defects are common. 


