
Holey Ship! Bilging by reinforcement learning

Jesse Rodriguez, Tiffany Chen, and Jason Turner-Maier

December 12, 2008

1 Introduction

We constructed a Markov Decision Process (MDP)
player of a Bejeweled-like game called "Bilging"– this
game is part of a massively multiplayer online game
based on puzzles. In this game, a player is presented
with a grid of pieces (the board), and for each move he
is allowed to swap horizontally adjacent pieces. If, af-
ter a move, three or more adjacent pieces of the same
type are aligned in a row or column, the player gains
some number of points based on the number and con-
figuration of these pieces. Immediately, the pieces are
then "broken" and the pieces below them are shifted
up to fill the space. Random pieces are added at
the bottom to fill up the resulting empty space. The
scoring is such that breaking more pieces in a single
move is worth significantly more than breaking them
separately, i.e. breaking six pieces at once is worth
significantly more than breaking three pieces twice.
There are several different possible types of breaks
based on the number of distinct horizontal/vertical
matches made with one move. The player’s overall
score is determined by their average score per move.

There are several interesting features of the game
that make it a compelling problem. First, the state
space is large with 7e60 possible boards, so we cannot
explicitly represent all possible boards. Second, a
greedy strategy yields a poor average score, since the
scoring function increases much faster than a linear
function of number of pieces broken. Third, since the
game can progress for an indefinite amount of time,
we are solving for a problem that has no explicit final
goal state.

The "bingo"

There are 21 types of matches (also called breaks)
with large rewards for the larger break sizes. How-
ever, larger breaks are far less likely to occur by
chance so they usually require several moves to re-
configure the board to make them. Human players
are prone to making an irreversible mistake during
these reconfiguration moves. It is generally agreed
among the best Bilging players that the ideal trade-

off between increasing the size of the break and diffi-
culty of producing the larger break is what’s called a
"bingo," or a 3x3x3.

This type of break can be made often enough such
that it is feasible to work towards it as a strategy,
while also giving a large number of points for com-
pletion. Due to this point efficiency, we trained our
Bilging player to prefer building bingos over other
break types. If larger breaks are readily available,
our player will take them, but bingos are the break
type it actively works towards. As a point of nota-
tion, we will refer to a "one-away bingo" as a bingo
that can be made making one move. For example on
the left we have a matched bingo (3x3x3), and on the
right we have a “one-away” bingo:

Blocker pieces

One problem that humans experience when making
bingos is that they will move a piece towards complet-
ing a bingo, but the move will cause an unexpected
break to occur near the bingo which destroys it. This
is because nearby pieces are aligned to form a match
and the move completes it. Because they hinder the
player from making the intended bingo, we call these
nearby pieces “blockers.” Here is an example where a
player is trying to complete a smaller match called a
3x3 but is hindered by blockers:

1

The player would like to move piece A over to the
right to complete the 3x3 with the C pieces. However,
if it does so in a naive fashion, it will form a break
with the B pieces on the way and will be unable to
complete the 3x3 since the A and B pieces will be
destroyed. It needs to move one of the B pieces out
of alignment with the other before moving A if it
wants to successfully complete the 3x3. Therefore,
the B pieces are blockers in this situation.

2 Methods

2.1 Features
Since the state space of the problem is so large, in or-
der for the learning process to be tractable we reduce
our state space by representing boards as features
of potential bingos on the board. We can easily de-
tect if a bingo is possible by counting the piece colors
present in each row. Let us make a few definitions be-
fore fully describing the features. For these purposes,
assume a one-away bingo is structured as follows:

Here, the two color types are denoted as X and O.
v and h refer to the row in which the piece appears.
By convention, X refers to the more abundant color
in the h row. Our features for a possible bingo mea-
sure how far from the one-away configuration it is.
These features are defined as distances from the rele-
vant pieces to a reference "anchor" point which is an
estimate of where the hO piece should end up in the
one-away bingo configuration. We use the following
heurisic to guess where hO should be: first, we find
the two closest X pieces in the h row:

Now, find we find a 3rd X piece in the h row, that
is closest to the first two pieces. This 3rd piece de-
termines the orientation of the bingo: if it is on the

right, we call it a right bingo, if it’s on the left it’s a
left bingo:

Then we set the anchor to be the position reached
when walking one step from these two pieces in the
direction of the 3rd:

Here are the bingo features we use to describe our
boards:

• Sum of the distances from the two closest vX’s
not in the same row to the anchor

• Sum of the distances from the two closest vO’s
not in the same row to one away from the anchor
in the direction of the bingo orientation

• Sum of the distances from the three closest hX’s
to the anchor

• Distance from the hO to the anchor

• Number of pieces which could not be moved
naively into position due to blockers

These are features are depicted graphically here:

If there is no bingo possible on the board, all the
features we describe above are set to their maxi-
mum possible values (eg the largest distance any piece
could be from the anchor).

2

As an aside, we also tried many iterations of
many different types of features before settling on
these. They involved loose patterns and distribu-
tion of pieces on the board without specific breaks
in mind. We found that training on these features
either produced greedy behavior, or pursuit of the
encoded patterns rather than matches that yielded
long term high scores.

2.2 MDP Definition
States

Each state is a full board configuration which is a
matrix with 12 rows and 6 columns with each ele-
ment containing an integer value representing one of
7 colors. Formally, each state s is defined by:

s ∈ Z12×6, si,j ∈ {0, . . . , 6}

We do not consider boards with matching values
to be valid states. Both of these statements hold:

! (i, j) such that si,j = si,j+1 = si,j+2

! (i, j) such that si,j = si+1,j = si+2,j

Actions

Each action swaps two horizontally adjacent pieces
such that taking action ai,j (1 ≤ i ≤ 5) on state s
causes exchange of values of si,j and si,j+1.

Successor function

Our successor function succ(s, ai,j) = s′ is determin-
istic if ai,j does not cause a match of 3 or more
in a row such that s′ is identical to s except that
s′i,j = si,j+1 and s′i,j+1 = si,j .

If ai,j causes a match, then s′ is sampled ran-
domly from distribution of successors states decribed
in the dynamics above whereby matching values are
removed, values are shifted vertically to fill their
place, and the remaining values at the bottom are
sampled with a uniform distribution over all 7 color
values such that the newly sampled pieces do not
cause any matches.

Reward function

We use a reward function R(s, a) based on the current
state, s, and the action a that is taken on this state.
Any action that does not cause a match is given a
reward of 0, and any action that makes a match is
given a positive reward. We store the score given by
each of the 21 of the match types (3x1, 4x4, 3x3x5,

etc) in the vector c such that ck = score for match k
with |c| = 21. So, if action a on state s creates a
match k, then

R(s, a) = ck

Value function

Since we use the state-action version of the reward
function, we have to modify our value function from
the state-only reward function described in the CS221
lecture notes1. We train our value function such
that Vθ(s) = θT φ(s) approximates maxa R(s, a) +
θT

(
1
k

∑k
j=1 φ(succ(s, a))

)
.

2.3 Fitted Value Iteration
Training

We created a training set of 1000 boards where a
bingo could be made with one move, and 1000 boards
where a bingo could be made after several moves. We
used a value of γ = .99 originaly but saw no behav-
ioral difference from γ = 1. To estimate the optimal
value function, we use standard fitted value iteration
described in the CS221 lecture notes, except that we
use the version that uses a reward function given by
a state-action pairing such that at at iteration we
calculate for each training example s̄(i)

y(i) = max
a

R(s̄(i), a) + θT



1
k

k∑

j=1

succ(s̄(i), a)





Playing

After training we have learned the optimal value func-
tion V ∗

θ , and in order to choose the best move to make
at each state, the MDP player evaluates the expected
value of each action by sampling each action k times.
Thus it chooses to make the following action for state
s:

arg max
a

V ∗
θ



1
k

k∑

j=1

succ(s, a)





This corresponds to a 1-move lookahead to optimize
over our value function that guides it towards com-
pleting a bingo with each move.

2.4 Software
We used the aima-java package
(http://code.google.com/p/aima-java/) for linear
algebra subroutines for performing normal-equation-
based linear regression during MDP learning. All

1http://www.stanford.edu/class/cs221/notes/Lecture10.pdf

3

other software was written by us, including the game
simulator, the gui, the MDP, model training routines
and, and game playing routines.

3 Results
By the numbers

When playing 50 moves per game, our MDP player
obtains an average score of 8 points per move. This
is much higher than a greedy implementation, which
averages a score of 3.8 points per move. It obtains
scores similar to above-average players (better than
the authors of this work), but is significantly short of
the best best human players; it is rumored that the
top human players average approximately 12.0 points
per move.

The MDP player completes 58%2 of the possible
bingos it encounters. While making moves towards
bingo completion, it sometimes enters a local optima
where it will decide not to make any more moves to
complete the bingo. We consider this a failure of
the MDP player since we trained it to complete as
many bingos as possible. However, by comparison,
a greedy player implementation achieved a 0% bingo
completion rate over the same number of moves and
games.

Behavior

This refusal to complete the bingo results from local
optima in the estimated value function where it views
any further moves around the bingo as worse than
playing at any other position on the board. This situ-
ation tends to occur when the MDP player must swap
two pieces where it moves one of them into a better
position but the other into a worse one. Futher, it
usually occurs when it is very close to the completion
of a bingo.

It exhibits a couple interesting "intelligent" ma-
neuvers that humans perform, and also some that
humans are rarely capable of performing. Because
we added features that take into account pieces that
block the construction of a bingo, the MDP is able to
recognize and move these blocking pieces out of the
way. As mentioned before, human players can acci-
dentally break a bingo before its completion, but it
turns out that our player will actively destroy a posi-
ble bingo in order to optimize the rest of the board
for another better bingo elsewhere which improves its
overall score.

2Computed as number bingos completed divided by number
of possible bingos encountered during 50 games of 50 moves per
game

4 Discussion
We attribute the good (but less-than-perfect) perfor-
mance to a couple factors. First, our MDP player’s
somewhat low bingo completion rate signficantly low-
ers its score. It seems to have the most trouble with
very spread out bingos which have many pieces far
from their correct position are difficult to assemble
without falling into a local optima (as previously de-
scribed). These same bingos tend to be difficult for
humans as well. Having a one-move look ahead lim-
its our value function in this regard since it is insuf-
ficiently expressive to create value function that is a
strictly increasing while progressing towards a bingo
in all possible cases. To address this problem, we may
add a small search routine or a two-move lookahead
which would help our player overcome these one-move
local optima. Secondly, our MDP is not trained to
optimally identify special cases where it can gain ex-
tra points by leveraging its knowledge of the scoring
function.

Overall, however, the player does very well in con-
structing bingos and exhibits desirable behavior. In
conclusion, we have produced a strong MDP Bilging
player, and future work will need to focus to work on
reducing the number of missed bingos to make it play
optimally. Eventually, we aim to compete our player
against a broader audience of human players.

Acknowledgements
We would like to thank Tom Do, Zico Kolter, and
Ian Goodfellow for helpful comments, suggestions,
and guidence in this project. The original Bil-
ging game is made and owned by Three Rings
Software as a part of their Puzzle Pirates product
(http://www.puzzlepirates.com/).

4

