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Abstract

Advances  in  active  3D  range  sensors  have  enabled  the 
recording  of  depth  maps  at  video  frame  rates.  
Unfortunately, the captured depth data is often noticeably  
contaminated with noise. We present a series of statistical  
analyses  and  denoising  techniques  to  improve  the  raw 
output of depth sensors. Unifying our investigations is the  
concept that in the presence of high sensor noise, the ability  
to distinguish effectively between noise corruption and real  
depth  features  is  needed  to  reconstruct  the  original  true  
geometry realistically.

1 Introduction

Range sensors, such as time-of-flight (TOF) cameras, have 
enabled the reconstruction of 3D geometry independent of 
texture  required  for  stereo  vision  methods.  Unfortunately, 
range sensors which are able to produce a 2D array of depth 
values  at  real-time  speeds  generally  produce  data  heavily 
corrupted  by noise.  In  this  paper   we elect  to  focus on a 
particular TOF camera, the Mesa SwissRanger SR3000. The 
SR3000 is  capable  of  capturing  176x144 resolution depth 
maps at approximately 30 frames per second.

Although  depth  sensors  are  increasingly  being  use  for  a 
variety of commercial  and academic applications, the high 
level  of  noise  makes  the  effective  use  of  these  sensors 
challenging; thus, we propose a technique for estimating the 
true original geometry of a scene based upon an input depth 
map.  Following  certain  previous  investigations  (noted  in 
Sect. 2) in the area of denoising we have elected to use a 
Bayesian model for our approaches. In Section 3 we present 
a series of techniques which illustrate some of the issues that 
depth reconstruction techniques should be aware of to enable 
the better recovery of true geometry by denoising of range 
data.  In  particular  we endeavor  to  tackle  raw data  that  is 
noisier  than previous works have used.  The high noise to 
distinguishable  feature  ratio  in  the  raw  data  makes  naïve 
denoising techniques problematic. We seek to sharpen edges 
and  blur  noise;  however,  this  requires  being  able  to 
distinguish the categories. In Section 3.2 we argue how such 
distinctions allow for data dependent denoising choices. In 
Section 4, we conclude with further suggestions as to further 
applications of such a model.

2 Related Works

There exist present techniques of obtaining less noisy depth 
maps from these sensors. The simplest method is to integrate 
over time by averaging many frames together; however, this 
is obviously not a viable option in real time scenarios. We 
seek  to  provide  a  method  which  could  be  applied  to 
individual  depth  frames  since  we  believe  such  a  method 
would  be  general  and  allow  for  use  in  a  greater  set  of 
scenarios  including  dynamic  scenes.  Most  related  to  our 
work is that by [Diebel06] where a Bayesian model was also 
used to perform probable surface reconstruction based upon 
slightly noisy depth data. A primary difference in our work 
is in the type of sensor used. The previous work focused on 
synthetic data or used data obtain from a laser line scanner. 
These  sensors  capture  at  much  slower  rates  than  TOF 
sensors, but they also provide much stabler measurements. 
In comparison, our sensors have a much higher noise to size 
of  feature ratio. However like the aforementioned work, our 
technique will ultimately be a Bayesian method which will 
estimate  the  true  depths  under  statistically  learned 
assumptions.  In  addition  the  previous  work  primarily 
focused on using simply the depth measurements from their 
sensor while we hope to also use other data and statistics 
such as the gray scale intensity image provided by our TOF 
camera.

Also relevant to our work are investigations into upsampling 
depth data. Some of these techniques are robust for at least a 
small amount of noise in the input depth maps, and in the 
process  of  increasing  resolution,  also  effectively  do  some 
noise reduction.  In  particular  upsampling does smooth out 
some  peppering  noise.  [Schuon08]  used  the  concept  of 
multiple  slightly  shifted  captures  of  the  same  scene  to 
provide  increased  information  on  a  scene  to  upsample  it. 
However this technique also relies upon multiple images just 
as time averaging frames does. The use of a high resolution 
color  image  as  a  guide  to  upsample  low resolution depth 
[Diebel05,  Kopf07,  Chan08].  Since  the  color  image  is 
comparatively  noise  free,  these  techniques  ultimately  also 
guide the result towards being comparatively noise free. This 
technique  relies  upon a fairly  accurate  alignment  between 
the color and depth images. Since no sensor presently exists 
with  a  unified  lens  set,  imperfect  calibration  procedures 
generally  results  in  some  misalignment  artifacts  in  these 



setups when used on real world scenes. 

Finally the task of super resolution for standard color images 
is also related to our goal. Towards this endeavor, learning 
techniques exist [Sun 2003, Freeman 2002] which ultimately 
manufacture  plausible  high  frequency  details  for  a  low 
resolution image based upon training sets of low resolution 
vs  high  resolution pairs.  Previous works use a  number  of 
ideas on different statistical priors of real images which will 
provide us with ideas for construction of potential priors for 
our  scenario  where  we train  upon low noise  vs  and  high 
noise data pairs of the same scene. Where as these previous 
works sought to improve visual upsampling in a relatively 
noise free RGB space, our analysis is in the realm of noisy 
depth  images.  This  poses  the  possibility  for  investigating 
some of  the  characteristics  unique to  depth sensors.  Most 
noticeably  the  data  we  have  provided  gives  depth  and 
intensity values. This allows us derive further features such 
as patch orientation for a given pixel.

3.0 Denoising Investigations

3.1 Probabilistic Denoising Framework

Our  framework  is  admittedly  similar  to  that  denoted  in 
[Diebel06].  In  our  scenario,  we  are  provided  with  depth 
measurements  m,  which  are  some  noise  corrupted 
approximation of the true scene distance x. We wish to find 
the probable value for x given the measurements based upon 
some statistical assumptions. Thus, we wish to optimize over 
the following objective function.

p  x∣m= p m∣x p  x/ p m (1)

where  p(m) is  a constant  with respect  to our  optimization 
over  the  x's.  The  x,  which  minimizes  this  objective,  will 
provide our best guess for the true scene distances.

x=argminx −log p m∣x−log p  x (2)

Here, the first term (log p(z|x)) will henceforth be denoted 
the measurement potential,  M, because it is a probability of 
the  noise  in  the  measurements  given  the  real  data.  The 
second term (log(p(x))) is our surface smoothness prior,  S, 
which is a prior probability of the smoothness of surfaces in 
the world. These two terms counteract each other during the 
optimization process.

As mentioned, one method for denoising depth maps is to 
fuse  the  data  with  aligned  unnoisy  color  data  under  the 
general assumption that that areas of similar color are likely 
to  have  similar  similar  depth.  We  start  with  a 
reimplementation  of  the  Markov  Random  Field  (MRF) 
objective  from  [Diebel05]  to  demonstrate  some  of  the 
problems with existing approaches. With this heuristic, our 
measurement  potential  simply checks  the squared distance 
between  the  estimated  real  depth  x with  the  actual 
measurement m. 

Figure 1: Scene (top) with raw depth map (top middle) is 
denoised using the single mode MRF method (bottom 
middle) using both the depth map and color image as 
inputs. Note the texture embossing from the colour image 
onto the depth map for the checkerboard, book cover and 
shopping bag text. In comparison when a 'noise vs feature' 
decision is made (bottom) the texture copying is removed.



M = ∑
i=1. . n

k∗ x i−mi 
2

// k is a weighting constant
 
S tries to maintain depths for neighboring pixels when their 
visible colors, denoted I, are similar.

S=∑
i
∑
j∈i

e−c∗∥I i−I j∥
2

 xi−x j 
2

By taking the derivatives of this objective function, we can 
set  up  this  optimization  to  be  solved  using  a  conjugate 
gradient  optimizer.  A result from this process is shown in 
Figure 1. Although the output depths are cleaner, this naïve 
approach  also  noticeably  suffer  from  texture  embossing 
since  noise  along  color  edges  are  enhanced  to  appear 
incorrectly as depth discontinuity.

3.2 Dual Mode Denoising

Alternatively,  we  design  an  augmented  bilateral  filter 
[Tomasi98] kernel. Within this closed formed solution, we 
distinguish between noise and feature with a simple metric 
removing texture copying as shown in Figure 1. The filter is:

x p=
1
k p

∑
q∈

I q f ∥p−q∥d  ,∥I p− I q∥,∥m p−mq∥

Here,  q is  an  index  for  a  nearby  value  from  the  set  of 
surrounding data points omega.  f is a Gaussian over spatial 
differences;  thus  without  function  d,  we  would  have  a 
Gaussian blur.

d=g ∥I p− I q∥1−h ∥m p−mq∥

d provides  a  blend  between  two  different  Gaussian 
functions. g operates upon differences in visible color while 
h operates upon differences in depth. When noise is present 
without features, we need not consult the color image, and 
the  input  depths  can  simply  be  blurred.  This  decision  is 
made by function alpha which takes in the neighborhood of 
depths and appropriately samples from the sigmoid function.

In the naïve MRF technique color features are erroneously 
visible  in the depth map.  The objective  function does  not 
differentiate  between noise and features;  thus,  noise along 
color  edges  is  enhanced.  The  bilateral  filter  method 
effectively has  a  dual  mode measurement  potential  where 
the  function  alpha  makes  a  decision  between  feature  or 
noise  and  either  chooses  to  edge  enhance  from the  color 
image or blur from the depth map respectively.

In  the  augmented  bilateral  filter  technique,  the  decision 
function,  alpha,  between noise vs feature is  made using a 
simple heuristic of comparing the maximum and minimum 
values within a neighborhood of a blurred copy of the input. 
However,  this metric  is  not  entirely robust  (Fig 2).  When 
small thresholds are shown foreground features (such as the 
separation  of  the  two  books)  are  visible  but  much 
background  noise  is  marked  as  feature.  When  large 
thresholds  are  chosen,  foreground  edges  are  not 
appropriately  marked.  A thresholding  problem exists  with 
the current metric; thus, it seems as if a distance dependent 
threshold could be learned from data to combat this problem. 
With  a  noise  model,  we  could  for  example  mark  small 
discontinuities in the foreground as feature while seeing the 
same  depth  difference  more  likely  as  noise  if  the 
measurement is faraway.

Figure 2: The scene (left) of two separated books has a 3D reconstruction (middle left) from raw data. Note the depth 
separation of the books is evident in the 3D scene. However, when we use a simple heuristic (Sect. 3.2) for distinguishing 
features from noise, this depth discontinuity  can not be effectively determined. Large thresholds (middle left) fail to mark 
the separation between the books. Small thresholds (left) cause the general depth map to be contaminated with noise.

Figure 3: Intensity images provided by the depth 
sensor.  To gather data for our noise model, we 
collected data of a Macbeth check at different distances 
and of a board at different orientations and distances.



3.3 Noise Statistics and Model

Based upon the results from our dual mode design, we seek 
to learn a noise model to better guide the noise vs feature 
decision.  For  TOF  range  sensors,  the  random  error  in 
measurement lies primarily along the ray from the sensor. 
From  recorded  tests  we  derive  that  the  noise  can  be 
approximated by a Gaussian. The noise for measurements is 
seemingly  dependent  on  a  number  of  parameters.  In  our 
current investigation, we have focused on parameters based 
upon  the  inherent  measurement  principle  of  the  SR3000 
which relies on the reflection off surfaces of infrared rays 
from the camera.

Choosing  parameters  likely  to  change  from  this 
measurement principle we decided upon the following:
(1)  distance from the sensor
(2)  incident angle between the infrared (IR) measurement
       rays and the surface being measured
(3)  infrared absorption of the material being measured
We  collect  data  of  a  board  at  a  variety  of  different 
orientations and distances (Fig. 3). In addition recordings or 
a Macbeth check at different distances is taken to measure 
noise due to intensity differences.  Some generalizations of 
the results are shown in Figure 4. As expected, the variance 
over  time  of  the  measurement  of  a  surface  increases  as 
distance  increases,  incident  angle  increases,  and  IR 
absorption  increases.  In  addition,  the  greatest  variance  is 
seen  for  low  intensity  values  (ie  high  IR  absorption)  as 
expected  since  in  this  case  no  measurement  rays  are 
reflected back towards the sensor.

Using  this  captured  data  we  can  run  a  gradient  descent 
algorithm  over  a  parameter  space  specified  over  a 
polynomial for each of the above variables. Thus we learn a 
polynomial regression for the variance values dependent on 
our parameters. This model is used in the formulation of a 
measurement potential. We next note an example objective 
for denoising using just a single depth sensor by itself.

3.4 An Application Upon Single Perspective Denoising

The denoising of a single depth frame can be done with the 
following  proposed  objective.  To  evaluate  the  similarity 
between  the  measured  depths  and  range  values  obtained 
during  conjugate  gradient  optimization,  we  use  the 
Mahalanobis  Distance  between  the  recorded  data  and 
optimized values as our measurement potential. 

M = ∑
i=1. . n

mi−xi
T .5 i

−1mi−x i

where sigma is the covariance matrix of our measured data. 
It is specified as:

=RT x
2 0 0

0  y
2 0

0 0  z
2R  

In our case, sigma z is the variance in the ray direction where 
we can use the results of our model. The other variances are 
provided  as  small  constants.  R provides  a  rotation  matrix 
into the ray direction for a given pixel in our depth map. For 
our  smoothness  prior  we  use  the  Laplacian  surface  prior 
below  where  omega is  once  again  the  surrounding 
neighborhood.  This  metric  is  passed  through  function  h 
which is a Huber function. The Huber function returns an L1 
norm for large inputs otherwise it returns an L2 norm. The 
L1  norm for  large  distances  makes  this  theoretically  less 
negatively  influenced  by  sudden  large  peppering  noise 
spikes.

S=∑
i=1. . n

h  xi−
1

∣i∣
∑
q∈i

q 

Application of this optimization to a raw depth map results 
in a noticeable cleaner range output (Fig. 5)

Figure 4: From the collected data, example plots of variance compared with each of our feature statistics when the other 
parameters are held to some constant. The calculated variance is based off of measurements made in meters. The units of 
scene intensity are from the raw output of the depth sensor which provides a 12-bit gray scale intensity reading along 
with the depth measurements. 



4 Conclusion and Future Work

We  have  presented  a  set  of  different  techniques  for 
denoising range data. In particular we demonstrated the need 
for a dual mode objective which differentiates between noise 
and feature to perform separate actions as necessary. For this 
goal we have designed a data model for the noise variance 
based  upon  recorded  measurements.  Further  quantitative 
analysis  of  our  model  should be  performed.  In  addition , 
present ground truth for our data model is obtained through 
temporal  averaging  of  frames  from  the  SR3000.  This 
unfortunately  does  not  take  into  account  the  slight 
systematic  bias  of  the  sensor.  Comparisons  with 
measurements from a more accurate device such as a laser 
range finder could increase accuracy. 

Insertion  of  a  noise  model  into  an  objective  with  a  dual 
mode surface prior term which smooths or edge enhances as 
is appropriate seems the next logical step. In particular the 
gradient  profile  prior (Sun08) seems a good candidate for 
enhancing known features. Further testing with a variety of 
surface priors should also be performed.

5 Acknowledgments

I would like to thank Professor Christian Theobalt, Professor 
Sebastian Thrun, and James Diebel for their advice through 
my TOF  data investigations as well as providing me with 
the  sensor  and  computing  equipment.  The  denoising 
investigations presented in this work are part of a larger set 
of investigations into TOF camera data reconstruction and 
data fusion with color cameras that started previous to this 
quarter and will be continuing past this class. Some of the 
bilateral  filter  investigations  discussed  culminated  in  mid-
October of this year;  however,  the work is still ongoing. I 
am also grateful to Sebastian Schuon for the recent setup of 
a  motor mounted laser  range finder  that  will  allow me to 
continue  with  these  investigations  using  a  more  reliable 
basis for ground truth measurements.

6 References 

D.  Anderson,  H.  Herman,  and  A.  Kelly.  Experimental 
characterization  of  commercial  flash  ladar  devices.  International 
Conference of Sensing and Technology 2005.

D. Chan, H. Buisman, C. Theobalt, and S. Thrun, A Noise-Aware 
Filter for Depth Upsampling. ECCV Workshop 2008.

J.  Diebel,  S.  Thrun,  and  M.  Breunig.  A  Bayesian  Method  for 
Probable  Surface  Reconstruction  and  Decimation.  ACM 
Transactions on Graphics 2006.

J. Diebel and S. Thrun. An Application of Markov Random Fields 
to Range Sensing. NIPS 2005.

W.  T.  Freeman,  T.  R.  Jones,  and E.  C.  Pasztor.  Example-based 
superresolution. IEEE Computer Graphics. 2002.

J.  Kopf,  M.  Cohen,  D.  Lischinski,  and  M.  Uyttendaele.  Joint 
bilateral upsampling. ACM Transactions on Graphics 2007.

A.  Levin,  A.  Zomet,  and  Y.  Weiss.  Learning  to  perceive 
transparency  from  the  statistics  of  natural  scenes.  NIPS  pages 
1247–1254 2002.

C. Tomasi and R. Manduchi. Bilateral filtering for gray and color 
images. In ICCV, pages839–846 1998.

S.  Schuon,  C.  Theobalt,  J.  Davis,  and  S.  Thrun.  High-quality 
scanning  using  time-of-flight  depth  superresolution.  CVPR 
Workshops 2008.

J. Sun, Z. Xu, and H. Shum. Image super-resolution using gradient 
profile prior. CVPR 2008. 

J. Sun, N. N. Zheng, H. Tao, and H. Y. Shum. Image hallucination 
with primal sketch priors. CVPR 2003.

Q.  Yang,  R.  Yang,  J.  Davis,  D.  Nistér,  Spatial-Depth  Super 
Resolution for Range Images, CVPR 2007.
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