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Introduction 

There is much that is unknown regarding the 

communication between different areas in the 

brain.  This is a research area of growing 

interest with the realization of applying 

technological advances to this field.  In this 

paper we will describe a method to apply 

machine learning to map communication 

between regions of the Visual Cortex (VC). 

 

Neural activity in the VC is hierarchical, and 

activation due to stimuli at one area leads to 

corresponding activity in specified regions of 

another area [1].  This can be illustrated by 

viewing the activation in voxels of each region 

over a given period of time using fMRI data.  

It has been shown that the signals for vision 

pass through the first area, V1, before entering 

other areas such as V2, and there is a mirrored 

image of the VC on each side of the brain, 

which we will refer to as RV1, RV2 and LV1, 

LV2 (we will treat these as separate regions of 

interest, ROIs, in our mapping).   In addition, 

we ignore any possible cross-wiring between 

hemispheres in these regions. Given the 

hierarchical processing of information from 

the stimulus to V1 and then to V2, our intent is 

to build a model to confidently predict 

mappings between these regions. In the 

process, we also build a model to predict V1 

from the stimulus.  

 

Data and Methods 

The FMRI data for our project was provided 

by Professor Brian Wandell’s lab at Stanford 

University. It is preprocessed to remove noise 

from the scanner and compensate for minor 

head movements of the subject. Our training 

sets and test sets consist of 1300 and 200 data 

points respectively. For example, in the model 

of stimulus to V1 prediction, our training set 

consists of the stimulus over 1300 time points 

and corresponding activation of a single voxel 

in V1. Given the stimulus at a specified time 

point, the response variables are the voxel 

activation numbers at that time point.  

 

We analyze the data by implementing a special 

type of linear regression called LASSO 

Regression. In addition, we implement 

regression using SVM and compare it with 

results from LASSO. We also compare our 

stimulus to V1 model with the pre-existing 

model of professor Wandell’s lab. We then 

build a model for V1 to V2 prediction.  Since 

the data is very high-dimensional, we 

implemented Principle Component Analysis 

(PCA) to reduce computational costs.  By 

using PCA, we were also able to interpret the 

parameters coherently and visualize the 

mappings more clearly. 

 

LASSO Regression 

LASSO, or "least absolute shrinkage and 

selection operator," is a technique which 

improves upon ordinary least squares (OLS) 

regression by minimizing 
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where λ  is the tuning parameter. It is 

implemented in a way as to shrink some )(i s 

and set others to 0. For example, if λ '  is the 

normalization in the case of OLS and we set 

/2'λλ  , then half the coefficients shrink to 

zero [2]. We choose to implement LASSO for 

the ease of interpreting the parameter  to 

construct the mapping. We use 10-fold cross 

validation in order to determine the best λ  

and then retrieve  from that model. This is 

done using lars package of R [3].  

 



Once we have  for the prediction of a given 

LV1 voxel from the stimulus, we reconstruct 

the stimulus by setting the value of each pixel i 

in the stimulus equal to i . We then threshold 

the pixel values and set all pixels below the 

median value to the minimum value. By doing 

so, we obtain a receptive field mapping for a 

specific LV1 voxel as shown in Fig. 1(a). The 

corresponding receptive field given by the pre-

existing model is shown in Fig. 1(c).  By using 

LASSO regression, we are able to 

conveniently interpret  to map the receptive 

field of any given voxel. We use the same 

procedure for the V1 to V2 model. Fig. 3(c) 

shows the strongly correlating voxel group 

(bright yellow) for an arbitrarily selected LV2 

voxel. By this result, we can hypothesize that 

this group of LV1 voxels drive the selected 

LV2 voxel. 

 

Fig. 2(a) and 3(a) show the actual and 

predicted signals together for the test data, 

which shows that the model predicts the voxel 

activation signal within a small margin of 

error. Generalization errors listed in Table 1 

also show that the model is reasonably 

accurate. Therefore, in addition to providing 

interpretable results, the model provides a 

good prediction. 

   

 

 

 
 

Fig.1. Receptive field mapping of a LV1 voxel according to parameters of (a) LASSO regression 

before PCA. (b) LASSO regression after PCA (c) pre-existing model of professor Wandell’s lab.  

Fig. 2. Prediction curve plotted together with the actual signal for a LV1 voxel using the first 100 

time points of the test data set, according to (a) LASSO regression (b) SVM regression. 



 
 

Model Stimulus -> LV1 Stimulus -> RV1 LV1 -> LV2 

LASSO .5589 .3671 NA 

LASSO after PCA 1.1064 .7054 .2462 

SVM .4587 .3105 NA 

SVM after PCA .4704 .3220 .17 

Table 1. Generalization errors obtained by averaging 10 distinct voxel regressions per model. 

 

SVM Regression 

As another method to predict activation from 

the stimulus to V1 or from V1 to V2 we also 

applied a SVM regression algorithm. We 

decided to do so in order to have another 

prediction to compare with the LASSO 

regression results. We chose SVM for its 

capacity to handle high dimensional data and 

its renowned efficiency. We used the 

SVM_Light software that can be used for both 

classification and regression. 

 

 

PCA 

The facts that our data are highly dimensional, 

thousands of dimensions per voxel, and that 

these dimensions are highly correlated (nearby 

voxels have a very similar activity and the 

stimuli are simple geometric shapes) strongly 

encourage the use of PCA before applying the 

regression algorithms. PCA proved to be 

useful in two ways, namely, dimensionality 

reduction and coherence of mapping.  

 

 



Contrary to the stimulus, it is not possible to 

downsample V1 data without losing much 

information. The computational cost of 

predicting the activation in a whole area from 

the whole stimulus is so high, that reducing the 

input dimension is a necessity. Upon 

performing PCA and plotting the decrease in 

component variance, we find that it drops very 

close to zero after about 600 PCs. With this 

90% reduction in dimensionality, the 

computational cost of each regression lowers 

drastically. Previous figures show that we still 

achieve very efficient prediction within a 

reasonable period of time. 

 

Fig. 1(a) and Table 1 show that there is some 

loss in predictability after PCA for stimulus to 

V1 prediction, particularly for the LASSO 

regression. However, the receptive field 

mapping is substantially more coherent and 

accurate compared with existing models as 

shown in Fig. 1(b).  This is because these 

nearby voxels have a similar behavior and 

therefore they have a close decomposition in 

the new basis (the principal component basis). 

This improves the coherence of the mapping 

and its visualization. 

 

Results 

We have results for the two types of 

predictions and mapping we worked with: 

stimulus to V1 and V1 to V2. For these two 

types of predictions we followed a very similar 

method. For the stimulus to V1 mappings, we 

had an existing model with which we could 

compare.  We used this to reinforce the 

confidence in the results of our method, as 

there is no existing model for the V1 to V2 

mappings. 

 

Estimation of error: 

In order to measure the correctness of our 

predictions, we chose to use the average of the 

sum of squared errors.  This method allows us 

to compare the predictions of each method in 

order to know how they perform and to what 

extent their results are reliable. The numbers 

given in Table 1 have been obtained with the 

predictions on the test set (two hundreds time 

points per voxel) and have also been averaged 

on several different voxels. These numbers 

have to be analyzed together with prediction 

curves and the mapping. 

 

Stimulus to V1:  

Results for the prediction of an LV1 voxel’s 

activation from the visual stimulus can be 

found in the two first columns of Table 1. It 

shows that these predictions are quite accurate. 

The SVM predictions tend to outperform 

LASSO predictions even if they are close for 

the full stimulus. Fig. 2(a) is a good error 

analysis example of why the error of LASSO 

with PCA is significantly higher, while the 

mapping is still correct: it appears that it tends 

to amplify the actual variations of the signal. 

However the way the signal varies is still 

accurate. SVM predictions lose less accuracy 

when non crucial information is removed. 

These results give us the possibility to detect 

the receptive field of each voxel (Fig. 1). This 

part is particularly important as we can then 

compare our results with the receptive fields 

given by Professor Wandell's Lab. The strong 

correspondence between our results and the 

lab’s results reinforces the accuracy of the 

prediction and indicates that the method we 

followed is efficiently solving the problem. 

 

V1 to V2: 

Results for V1 to V2 predictions can be found 

in the third column of the table. These results 

are for our prediction with the 600 principal 

components of V1, but we tried several 

numbers and the results seem very robust to 

this parameter. 

 

Again, SVM predictions are slightly better 

than LASSO predictions, but they are very 

close. These errors are low and show a very 

accurate prediction of V2 activation with V1 

information. This can also be seen in Fig 2 



prediction curves on which one can see that 

predictions are very rarely far from the actual 

signal. 

 

It also appears that we are able to predict far 

more precisely V2 activation from V1 than V1 

activation from the signal. This result was 

absolutely not obvious a-priori as the data we 

have on the stimulus signal are perfect, but 

fmri data of V1 activation are far from this 

resolution. One possible explanation for the 

lower results for the stimulus to V1 predictions 

could be due to what is determined to be the 

true stimulus.  We assume that the stimulus is 

limited only to the image that the subject sees, 

but there may be other factors that contribute 

to what the patient actually sees. 

 

These good results, as well as the confidence 

we can have in the method as a result of 

verifying the stimulus to V1 predictions with a 

given model, enable us to give an accurate 

activation mapping for V2 voxels. This 

mapping which can be seen in Fig. 3c achieves 

our main goal. 

 

Conclusion 

We were able to build successful models for 

both stimulus to V1 prediction and V1 to V2 

prediction. By implementing machine learning 

algorithms, we were able to develop accurate 

models. These results will be useful to 

neuroscientists in understanding the relations 

between these two regions of the visual cortex.  

These methods could be generalized to 

determine mappings in other regions of the 

Visual Cortex as well as elsewhere in the 

brain.  
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