
Semantic classification of email  
 

 

Data 

The data is comprised of a pool of 1 million emails from the Enron Corporation that were 

made available to the public. From these, N=1805 emails were tagged with semantic 

labels. The labels are in the domain of meetings. 

Each email can have multiple labels; this makes the classification problem more 

interesting, the idea is to try to retrieve correctly all the labels assigned to a particular 

email. Most of the emails transcribed are labeled else, leaving relatively few classes with 

enough training samples to produce significant results. 
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2 4 158 326 2 30 1419 16 5 14 4 9 

 Table 1. Number of emails containing each label. 

 

I left out the classes with less than 9 training examples: add-agenda, add-agenda-items, 

cancel-active, prepare-materials and request-info.  

The data was split into train and test sets with 70% and 30% of the data respectively.  

Since there are some classes with few positive samples I used 3-fold cross validation on 

the training data to tune parameters.  

Feature Extraction 

  The first step is to extract relevant features from the 1805 emails. The header of 

the emails was removed, except for the Subject:  line which contains relevant 

information about that can help in the classification problem. The rest of the header 

contains information like “From:” that might improve training error but will not 

generalize to a different test set. 

The training feature is the frequency of the word in the email normalized by the total 

number of words in the email. A dictionary of features is created on the training data; this 

dictionary is used in both training and testing, OOVs are ignored.  

 

Pre-processing 

The body of the email was pre-processed to parse strings for dates, times numbers and 

phone numbers into generic tags, <date>, <time>, <month>, <year>, <number>, and 

<extension>. All capitalization and punctuation was also removed. 

   

Training 

I trained 7 SVM classifiers, one for each label. The classifier used was SVM light [1]. 



SVM regularization parameter C was tuned (using 3-fold cross validation) on the training 

set, individually for each class, on each new training run, as well as the threshold T. The 

weight on the errors of positive samples j was set for each class individually. 

     

 

To tune C I retrained the models on 66% of the training data and tested on the remaining 

33% for each of the three folds, and chose the C that maximized the average F-score of 

the three folds.  

SVM light computes a good default value for x)* x/(1 avgCd = , I use a multiplier m 

(500, 200, 100, 50, 10, 1, 0.1, 0.01) on this default value. After that I fix C=m*Cd and 

tune T by computing the F-score on score -T for T from +5 to -5 in increments of 0.1. 

 

In the data set the classes are unbalanced; there are many more negative examples than 

positive examples. SVM light provides a parameter j that multiplies the sum of the errors 

of the positive examples in the objective function [2]. 
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j   where −N  is the number of negative samples. 

 

Testing 

 There are two metrics that I used to evaluate the performance of the system.  

 

1. The 1-Best F-score (harmonic mean of the precision and recall).  

2. The N-Best F-score. 

   

For 1-Best I count as true/false positives/negatives the highest scoring class (i.e.: I sort 

the classes in decreasing order according to the SVM score and choose the first class). 

For the N-Best F-score I count all the positive scoring or positive label classes. For a 

given email TP will be the sum of the classes that have positive labels and positive SVM 

score, FP the sum of the classes that have negative labels and positive scores, and FN the 

sum of the classes that have positive labels and negative scores.   

The N-Best score will give an idea of how many correct labels we are assigning to each 

email, whereas the 1-Best score will only look at the highest scoring class and can be 

misleading regarding the performance of the system, since we are interested in retrieving 

all the labels for a given email. 

 



Experimental Results 

I will consider the baseline to be the case in which we classify all emails as else (i.e.: the 

email doesn't contain any meeting information). For this case I set all the samples as else 

in the test data (score +10 for else and -10 for the other classes) and compute the scores. 

1-Best:  TP: 426  ,FP: 150     Precision:  73.9 %  F-score:   84.9 

  FN: 0     ,TN: 0      Recall:       100 % 

 

N Best:     TP: 426  , FP: 150 Precision:       73.9 %   F-score:   68.4 

  FN: 241  ,TN: 6095 Recall:          63.8 % 

 

If I train the SVM without tuning C or j and I don't tune T I get: 

1 Best:  TP: 453  FP: 99 Precision:      82.0 %  F-score:    89.3  

  FN: 8     TN: 16 Recall:           98.2 % 

 

N Best: TP: 460  FP: 100 Precision:      82.1 %  F-score:    74.9 

  FN: 207 TN: 6145 Recall:           68.9 % 

 

In the following I'll show only the F-score measure. 

After optimizing the threshold T for each class:  

1-Best :  92.8 % 

N-Best:  67.2 %  

 

The N-Best score degrades by 7.7 % absolute, this seems counter intuitive. After 

examining the results I see that the class reschedule is producing a lot of FP with low 

positive score. This class has only 9 positive samples so it's the most unbalanced class, so 

tuning j would probably fix this problem. 

 

After re-training the models using j as described above for each class and re-tuning T: 

1-Best:    93.9 

N-Best:   86.9 

 

We get a nice improvement of 1.1% absolute for the 1-Best score and 19.7% absolute for 

the N-Best score. This seems to fix the problem with the reschedule class.   

 

Tuning C (as m* Cd), re-training the models and re-tuning T afterwards I get: 

1-Best:    93.8 

N-Best:   86.2 

 

Tuning C doesn't seem to improve the score. 

 

After doing some error analysis I observed that there are cases in which else and other 

labels are selected as positive results, this is not logical since the class should be either 

else or any other class. Also there can be cases in which a sample doesn't get any positive 

scores and is considered a TN so it doesn't belong to any class, but it must belong to a 

class because else plus the other classes is the universe. 



Changing the approach to train SVMs only for the classes that are not else, and consider 

an email to be else if all the scores are negative, that is if all the SVMs classified the 

sample as negative. This solves the logic problems in the experimental setup. 

 

After re-tuning C and T I get:  

1-Best:    94.2 

N-Best:   86.5 

 

I get a small improvement of 0.3% absolute for both scores. 

 

For feature selection I tried removing features in the dictionary that have frequency 1. 

These features could be considered noise, and removing them can decrease the feature 

dimension significantly. After re-tuning parameters and re-training I get:  

1-Best:   93.6 

N-Best:  86.8 

 

I observe a small improvement of 0.3% for the N-Best score and degradation of 0.6%  for 

the 1-Best score. 

 

One idea that improves performance considerably in Speaker ID systems that use SVM 

classifiers is to do variance normalization on the features. I computed the standard 

deviation of the features on the training data and normalized both the train and test 

features. It doesn't seem to improve performance. 

1-Best:    92.9 

N-Best:   86.3 

 

 

System 1-Best F-score N-Best F-score 

baseline (all else) 84.9 68.4 

default C, j=1, T=0 89.3 74.9 

default C, j=1, tune T  92.8 67.2 

default C, tune j, T 93.9 86.9 

tune C, j, T 93.8 86.2 

remove else SVM, tune C,j,T 94.2 86.5 

remove freq. 1 words 93.6 86.8 

variance normalization 92.9 86.3 

Table 2. Systems performance 

Conclusions    

An email classification system was developed that tries to predict a semantic label in the 

context of meetings. The system improves on the performance of a baseline that classifies 

all emails as irrelevant (else), based on a metric (N-Best F-score) that was defined to 

asses performance in the case that multiple labels (with the same weight) are assigned to 

a sample. The biggest improvements in performance are obtained by properly tuning 

parameters j and the thresholds T. 

 



References 

[1] Thorsten Joachims, Learning to Classify Text Using Support Vector Machines. 

Dissertation, Kluwer, 2002. 

[2] K. Morik, P. Brockhausen, and T. Joachims, Combining statistical learning 

    with a knowledge-based approach - A case study in intensive care   

    monitoring. International Conference on Machine Learning (ICML), 1999. 


