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Introduction 

Active neurons communicate by action potential firing 

(spikes), accompanied by transient increases in the 

intracellular Ca
2+

 concentration ([Ca
2+

]i). Fluorescent 

proteins that bind to Ca
2+

 allow to observe dynamic 

changes in [Ca
2+

]i in vivo via fluorescent microscopy 

techniques, such as two-photon laser scanning 

microscopy (TPLSM). TPLSM is an optical sectioning 

method - simultaneous interaction with 2 photons is 

required to excite a fluorescent molecule and thus 

excitation effectively occurs only in the focal spot of 

the laser beam. As the laser beam is scanned over a 

plane within the tissue, emitted light from every spot 

within the plane is collected and used to reconstruct 

an image. Compared with electrophysiological 

measurement techniques, TPLSM offers the advantage 

of allowing to observe activity in large populations of 

identifiable neurons (Svoboda and Yasuda, 2006). 

However, the time resolution is limited by the 

requirement to collect sufficient fluorescence energy 

per pixel to obtain a high signal to noise ratio, given 

the properties of photon shot noise (Vogelstein et al., 

2008). With this low time resolution it is difficult to 

determine exact spiking event times that are of 

interest (Ozden et al., 2008). Standard analysis of 

TPLSM images consists of marking a region of interest 

(ROI), corresponding to the location of a neuron, and 

then treating the average of pixel intensities in the ROI 

as a sample of the signal of interest. Thus, the signal is 

represented via samples taken at the low frame rate 

of acquisition. In this project, an attempt is made to 

extract a representation of the signal of interest with a 

higher time-resolution than that given by the frame 

rate, and thus facilitated a more accurate 

identification of spike times. In order to allow the use 

of every pixel within a frame for an accurate 

reconstruction of the signal, it is required to exclude 

redundant pixels from the ROI, which do not reflect 

the neuron activity but consist of noise alone. To 

achieve this goal, a mask refinement method, 

separating signal and noise pixels, was applied. 

Methods 

Data acquisition: Imaging was performed in 

anesthetized mice cerebella using a custom designed 

two-photon micropscope. MPscope software was 

used for data acquisition and control of the 

microscope (Nguyen et al., 2006). A single movie, 

acquired at a frame rate of 10fps and size 128*128 

was used to test the refinement and interpolation 

methods. A movie acquired at a rate of 20fps was 

used to validate the simulated signal quality. 

Simulation: The following characteristics were chosen 

for the simulated signal: a firing rate of 3Hz and 

exponential Ca
2+

 decay with time constants varying 

between 120 and 200 msec (slightly lower than the 

reported times of 280 ± 60 ms but typical for our 

dataset). A spike train corresponding to the chosen 

average firing rate was simulated as described in 

Dayan and Abbott, 2001, by dividing the time axis into 

constant interval bins and randomly assigning spikes 

to bins with a probability of ∆t * (firing-rate). Then, 

the Ca
2+

 signal was constructed as a superposition of 

typical exponential decay responses to the fired action 

potentials, with amplitudes and decay time 

coefficients randomly chosen from the sets [1 0.9 0.8 

0.7 0.6] and [0.2 0.18 0.16 0.14 0.12], respectively.  

 

 
Figure 1. Comparison and simulated and real data. Top: excerpt 

from a real data set acquired at 20fps, Bottom: except from the 

simulated data set. 

Gaussian random noise with 0.1 standard deviation as 

well as sinusoidal noise with frequencies 1/3 and 2/3 

Hz and amplitudes 0.05 and 1 respectively, were 

added to make the signal waveform less ‘ideal’. Figure 

1 demonstrates the similarity between the real and 

simulated signals. Data acquisition with TPLSM was 

simulated for a neuron with realistic dimensions 

residing in a 128*128 or 256*256 frame (the mask 

used to define the region was formed using the real 

data set). Taking into account the scanning waveforms 

used by our microscope control software, a vector of 

samples that would have been acquired if the 



simulated signal represented the activity of a neuron 

in the ROI was formed. 20fps was used as the highest 

acquisition rate, 5fps as the lowest. For mask 

refinement testing, pixels containing noise alone were 

added, and noise was added to the signal pixels as well 

when testing various noise conditions (see mask 

refinement results).  

Interpolation: Locally-weighted logistic regression 

(LWLR) was used to predict values of the signal of 

interest at a rate of 20fps, based on samples of 

simulated acquisition or real data, acquired at 5fps, or 

at 10fps, respectively.  

Spike detection: The correlation between the 

interpolated signal and 5 samples of the typical Ca
2+

 

response to a spike – centered at the current time-

point, was calculated at every time-point. The 

response used is given by: 
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Where k = 0.002 and t0 = 0.15. The multiplication by 

the sigmoid is used to smooth the exponential rise and 

exclude values for t < t0. To detect a spike, a threshold 

was applied to the result and maxima points above 

the threshold were chosen as detected spike times. 

Mask refinement: Assuming that the intensity in every 

pixel is either a sum of signal and Gaussian noise or 

noise alone, a Gaussian Mixture Model consisting of 

two 2D, or 3D Gaussians was used to classify the pixels 

covered by the initial mask into ‘signal’ and ‘noise’ 

groups, based on their different characteristics. Model 

features were pixel intensities when a spike was fired, 

and at the next one or two frames. For signal pixels, 

the mean and variance is expected to be different at 

each frame, and the values are also expected to be 

correlated. For noise pixels, the means and variances 

are expected to be the same in all frames, and the 

values are expected to be independent. Accordingly, 

the following model equations were used: 
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Where Z, the latent variable, is equal to 1 for a signal 

pixel, and to 0 for noise; x1 is the intensity at the spike 

time and x2 is the intensity in the same pixel at the 

next frame and x = [x1 x2]
T
. Model parameters were fit 

using the Expectation Maximization (EM) algorithm, 

with the following equations: 
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Similar equations were used for the 3D case.  

After the EM algorithm converged, signal pixels were 

chosen as pixels having values of w1 higher than 0.5 

(i.e., pixels having a probability larger than 50% of 

being signal pixels), and the rest were chosen to be 

noise pixels, removed from the mask. 

To validate the quality of the resulting mask, and 

choose between masks fitted to different frames, 

linear regression was used to fit 2D polynomials to the 

resulting samples acquired by averaging over lines in 

each frame. The mask yielding a minimal mean-square 

error (MSE) of fit was chosen as the optimal mask.  

Preprocessing of real data: Frames were represented 

as normalized differences in fluorescence:  (F-F0)/F0, 

where F is the current fluorescence intensity image 

and F0 is the intensity averaged over 50 frames. A 

neuron residing within the field of interest was 

manually identified according to its typical activity 

pattern and spatial shape.  

Performance analysis: For quantifying interpolation 

performance on simulated data sets, the MSE 

between estimated and true samples was calculated. 

Then, event detection was performed using both 

interpolated and uninterpolated data, showing that 

the rate of spike detection at a high time resolution 

was increased. Thus, a correct spike detection was 

defined as a difference smaller than 1/20sec between 

estimated and true spike times (TP), failure to detect a 

spike within a time window of 1/10sec around a true 

spike was counted as miss-detection (FN) and a 



detected spike that is more than 1/20sec away from 

any real spike was defined as a false alarm (FP).  

Results: 

Interpolation of simulated data: The results of using 

interpolation with LWLR are presented in Fig. 2. Since 

using all the samples within a frame and using 

averages taken over lines yielded similar results, we 

used the latter, which is easier to implement. The 

lowest MSE for a small 128*128 frame, 0.047, with 

respect to the true signal, is similar to the MSE 

reached by averaging over frames ‘acquired’ at 20fps, 

0.043 (the red line in the figure), which was calculated 

as a reference for performance quality. The bandwidth 

parameter used was 0.04, corresponding to averaging 

over 58 lines per prediction. Since there are 39 lines in 

a frame, this means information was extracted out of 

more than one, but less than two, frames. With a large 

256*256 frame, the lowest MSE reached was 0.077. 

Unfortunately, this constitutes only a minor 

improvement compared to the lowest MSE achieved 

with interpolation based on averages taken over the 

entire 5fps frames, 0.087 (the black line in Fig. 2).  

 

 
Figure 2. LWLR results (simulation) – MSE error between 

interpolated frames ‘acquired’ at a rate of 5fps, and the true signal 

at 20Hz. Top: small frame (128*128), Bottom: large frame 

(256*256). The red line indicates the MSE error for averaging over 

the ROI in frames ‘acquired’ at a rate of 20fps,the black line is the 

error for applying LWLR to averages over the entire ROI in the 5fps 

frame. 

Spike Detection in Simulated data: The results of 

spike detection at a time resolution of 1/20sec are 

presented in Fig. 3.  

(a)  

 

(b) 

 
Figure 3. Spike detection results (simulation). (a) Comparison of 

signal-based detection and correlation-based detection. (b) 

Comparison of interpolated 5fps detection rates and 

uninterpolated 5fps, 20fps detection rates.  

Figure 3(a) shows that using the correlation with the 

typical response yields a more accurate detection of 

the spike time than using maxima points of the signal. 

This is probably due to the fact that the sampling by 

scanning might miss the exact peak time, and thus the 

maximum value in the sampled signal is not the actual 

maximum value of the true signal. However, by using a 

few more samples to better describe the shape of the 

response, a more accurate identification of the exact 

spike time can be reached. Figure 3(b) shows that 

interpolation improves the detection rate, compared 

with detection based on uninterpolated frame 

averages, but does not reach the level of accuracy 

which acquisition at a fast rate yields. Further 

optimization of the method (e.g., by adjusting the 

typical response parameters or changing the number 

of samples of the response used to calculate the 

correlation) may yield further improvement of the 

results. 

Mask Refinement in Simulated data: Refinement 

quality was verified under various noise levels. In real 

data, since the most significant noise source is photon 

shot noise, it is expected that the variance of the noise 

for the higher mean signal pixels will be high as well, 

with respect to the lower mean noise pixels (in 

accordance with a Poisson distribution). However, 

since it is unclear what the exact statistical properties 

of the real data are (it is unknown which pixels 

correspond to signal and which to noise and thus is 

impossible to calculate the corresponding statistics), 

we concluded it will be useful to know what algorithm 

parameters work best at each of many possible noise 

levels added to the signal and noise pixels.  

The parameter space which was explored to find the 

best configuration at each noise level, consisted of 3 

initial mask sizes – including 320, 284 and 248 pixels 

(143 of which are signal pixels); 2 initialization 

methods (random, based on thresholding over x1 



values) and 2 or 3 features: intensity in a frame with a 

spike and in one or two consecutive frames. Specificity 

was chosen as the criterion for comparison, as the 

objective is to refine the mask and remove noise pixels 

from it. However, we also mention sensitivity values, 

as a drop in these means only a few signal pixels 

remain to be used for interpolation – and this should 

be avoided. The best results achieved in every noise 

condition (averaged over 3 trials) are shown in Table 

1. Initialization using a threshold always yielded better 

performance than random initialization, thus all 

results reported are based on threshold initialization.  

Init. 

Mask 

size 

# of 

features 

Specificity 

(Sensitivity) 

mean ± std. 

Noise 

Std. 

Signal 

Std. 

320 3 1 ± 0  

(0.99 ±  0.01) 

0.3 0.1 

320 2 0.97 ± 0.03 

(0.99 ± 0.02) 

0.5 0.1 

320 3 1 ± 0.003 

(1 ± 0.004)  

0.2 0.3 

320 3 1 ± 0  

(0.99 ± 0.01) 

0.1 0.4 

320 2 0.98 ±  0.02 

(0.87 ± 0.09) 

0.3 0.4 

320 2 1 ±  0  

(0.61 ± 0.28) 

0.1 0.6 

284 2 0.94 ± 0.09 

(0.65 ± 0.38) 

0.5 0.6 

It can be seen that a large initial mask size yielded 

better results than a small one in almost all cases. It 

could be that a large enough amount of noise pixels is 

required for model parameter estimation during 

training. For the choice of the number of features, 

however, it is not clear why the 3 feature model 

sometimes better performed than the 2 feature model 

and sometimes did not. One possibility is that the 

number of samples used for training is small for a 3 

feature model and thus performance is inconsistent. 

In addition, using 3 features sometimes yielded an 

improvement compared with 2 features, but not 

consistently. For high noise levels (0.5, when keeping 

in mind signal amplitudes are no larger than 1), the 

sensitivity dropped significantly. It is possible that in 

such high-noise cases, it is better to use a threshold 

lower than 0.5 for assignment of signal pixels as such, 

even though this choice will inevitably cause a 

decrease in specificity. In addition, the method’s 

performance is dependent on correct identification of 

events used for mask refinement – which is more 

difficult when the noise levels are high. Large events 

allow for a more accurate mask refinement, whereas 

refining a mask with a frame that was wrongly 

identified as consisting of an event yields very poor 

results. Running refinement on the same frame with 

different configurations showed that higher likelihood 

values correspond to a better refinement result. This 

is encouraging as the resulting likelihood can be used 

as a performance measure in real data as well. 

Mask Refinement in Real data: In real data, it is 

impossible to quantify the performance of refinement 

as in simulation, since the true identity of the pixels is 

unknown. However, a correctly refined mask should 

yield line averages having a clear trend – being 

samples of the same signal taken at close, yet 

different, time points. Qualitatively, this result has 

been achieved for 2-3 out of every 10 frames over 

which the algorithm was run. Some qualitatively good 

refinement results are shown in Fig. 4. 

 

 

 

 
Figure 4. Line averages in real data frames before and after the 

mask was refined using GMM fitting. 

Frames in which refinement clearly failed were easy to 

detect since they consisted of very few pixels 

identified as signal pixels. When fitting a 2D 

polynomial to the refinement result, the mask yielding 

a minimal MSE was also one that qualitatively seemed 

to have been successfully refined. When this optimal 

mask was used to interpolate the data – as shown in 

Fig. 5, the resulting signal seemed noisier than the 

original frame-averaged signal, but also consisted of 



sharper peaks corresponding to spiking events. Spike 

event times detected based on the interpolated signal 

were not identical to those detected based on the 

averaged signal.  Whether this indeed constitutes a 

better representation of the signal and more accurate 

determination of spike times cannot be verified at this 

point. 

 
Figure 5. Result of applying LWLR to real data sampled at 10fps, 

interpolating it to a sampling rate of 20Hz, compared with 

averages taken over the entire ROI, at the frame rate. 

Discussion: 

Simulation results indicate that given the properties of 

the dynamically changing signal of interest and the 

method in which it is acquired, averaging over the ROI 

in each frame may cause loss of information that can 

be retrieved via a more careful signal interporlation. 

Using LWLR we in effect still perform averaging over 

information (thus, suppressing noise), however, since 

acquisition time is taken into account and the average 

is weighted accordingly, a better representation of 

how the signal changes over time is produced.  

In addition, mask refinement results show that fitting 

a GMM to a manually selected mask can improve the 

identification of signal pixels and prevent noisy 

samples from affecting further analysis. Further 

testing is required to find an optimal way of applying 

this method to real data. Since the imaging is 

performed in vivo motion artifacts may affect the 

correct selection of pixels in various frames. 

Accordingly, for real data it may be required to fit a 

different mask for every event, or divide the signal 

into short time windows fitting a different mask for 

each. When doing so, it is possible that using a 

previously fit mask, from a previous event or window, 

to initialize the refinement procedure for the next 

event or window, will yield better results than 

initializing using a threshold. 

In order to further validate the results of mask 

refinement, interpolation, and spike detection on real 

data, as well as identify and optimize the most critical 

parts of the process, it is required to use a data set 

that consists of simultaneous electrophysiological 

measurements that allow accurate identification of 

spike times. 
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