
Automatic Processing of Dance Dance Revolution

John Bauer

December 12, 2008

1 Introduction

The video game Dance Dance Revolution is a music-
based game of timing. The game plays music and
shows patterns of arrows synchronized with the mu-
sic. The player stands on a platform marked with
the same four arrows shown in the game and earns a
score based on how closely his steps match the tim-
ing of the video game. A pattern of steps for a given
song is called a step chart, and each step chart has
a difficulty based on the speed of the music and the
number of arrows.

Official versions and knockoffs of the game have sev-
eral hundred songs in total. Furthermore, freeware
versions exist that allow users to enter their own
songs. To enter a new song in such a version, a user
must find the exact tempo of the music and choose
the timing of the arrows to associate with the music.
In general, a good player will notice a discrepency
of as little as 10 ms in the timing of a song, so the
timing of the new song must be very precise.

This leads to three separate tasks that must all be
completed to process a song for use with DDR. First,
the correct tempo of the song must be found. Second,
the music in each measure or beat must be analyzed
to see what steps fit that section of the music. Finally,
given this information, the program must assign steps
in time to the music to produce a step chart of a given
difficulty.

The goal of this project is to analyze a previously
unknown song and produce a step chart compatible
with one of the freeware versions of DDR.

2 Training Data

As previously stated, many official versions of DDR
have been released, along with several knockoff games
made by competitors. In addition, a large body
of fan-written work exists for the freeware versions.
Downloading this data from various websites gives an
easy to find source of training data for this program.

However, there is a problem with the data available.
Even the “official” songs are not officially released
by Konami, but are ripped, timed and editted by
fans. Worse, independently made fan work is often
of questionable quality. Songs of both types are often
completely unusable.

As it turns out, over the years I have collected some of
this music for my own personal use. After eliminating
some because they use features I am not working on
here, I have over 350 songs timed to within the 10 ms
accuracy discussed earlier.

3 Determining Tempo

The first thing to do is to find the tempo of a song.
We can view the timing of the song as a function
from the beat number to time elapsed from the start
of the song. The tempo is then the derivative of this
function. As the tempo may change over the course
of a song, the derivative may not be constant or even
continuous. What we do here is try to find a piecewise
linear approximation to the timing function.

1



The first and most important aspect of finding the
timing of a song is to find when a strong downbeat
is. In fact, one can use this ability alone to calculate
the tempo of a song. Once two strong beats have been
identified, one can estimate the tempo in between the
two by measuring the possible beats in between and
using the tempo that gives the highest overall score.

One way to find a strong downbeat is to make a clas-
sifier that can recognize such a downbeat by calculat-
ing the spectrum of a song. To make such a classifier,
we first need a set of features. The FMod API library
is useful for this, as it can find the audio spectrum
of a song. Using multiple frequencies from a several
slices of time lets one build up a block of frequency
strengths.

Spectra for a time close to the known beat (such as
the one shown) are given a positive training label, and
those for times in between beats are given a negative
training label.

In fact, a procedure that seems to work well is one
that actually treats the problem as two separate
pieces. First, we look for a region in which we claim
the nearest beat is within 50ms. Next, we look within
that region for a smaller region in which the nearest
beat is within 5ms. In both cases, positive examples
are produced by taking the spectrum of a small win-
dow near a known beat, and negative examples are
produced by taking the spectrum of a window outside
the desired range.

The first classifier tried was that of Naive Bayes.
This worked poorly in terms of precision/recall or
other numerical measures. For example, on a train-
ing set of 3000 audio samples and a test set of 750,
the “wide” classifier (50ms tolerance) had a training
rate of 78.4% and a test rate of 76.4%. The “narrow”
classifier (5ms tolerance) had a training rate of 70.0%
and a test rate of 71.4% (random fluctuations are to

be expected because of the songs used).

However, when applied to an actual piece of music,
even these inaccurate results can often give good an-
swers. For example, on a techno remix of “Xingfu de
Ditu”, by Elva Hsiao, this method acheived the 10ms
tolerance discussed above. By scanning over 2s inter-
vals at a time, first looking for the strongest match
to the wide classifier and then looking in that region
for the strongest match to the narrow classifier, the
classifier accurately found the beats to within 10ms
of the known good values.

Applying the routine to the song “Don’t Sleep in the
Subway” by Petula Clark, a song that does not have
a constant tempo, led to a less satisfactory result,
with the beats found being off by 20ms on average,
although one beat was off by 50ms. However, the
ground truth values for this song are noisy. The
tempo is not steady, I had to time it by hand, and
the rhythm of the song is much fainter than that of a
thumping techno piece. All things considered, this is
not a great result, but would be acceptable for casual
use or could be corrected by hand for more serious
players. (Interesting bit of trivia: the beat that is off
by 50ms is one I always get wrong when playing this
song; I assumed it was player error, but perhaps it is
an error in the ground truth timing.)

On a song in which the classifier successfully finds
accurate downbeats, finding the tempo that matches
the intervening beats is easy. The tempo should be
one that gives an integer number of beats between
the two found downbeats, and the way to find that
tempo is to take the one which gives the highest score
using the same classifier.

An off-the-shelf SVM library, libsvm, produced a
higher test rate: 87% on the “wide” classifier and 80%
on the “narrow” classifier. This was trained with a
linear kernel. I then used the grid search cross valida-
tion script that came with libsvm to look for a better
Gaussian kernel, but the best one found had a test
rate of 84% on the “wide” classifier test set. As it
was larger, slower, and less accurate, I did not con-
tinue searching for better parameters for the SVM.

2



Also, I did not search for a polynomial kernel. My
intuition, though, is that a good polynomial kernel
would work well, as it could look for correlations be-
tween multiple parts of the spectrum that indicates
how far apart the beats are coming.

One drawback to using the SVM is that the feature
sets are very high dimension. The result is that the
SVM is both large (300MB) and slow (roughly 1/10th
the speed of Naive Bayes). This suggests a PCA ap-
proach, but such an approach is not implemented.

One specific case that can be improved is when the
tempo is expected to be a constant tempo. This is
often true for the songs used in DDR, such as techno
or a lot of pop music. In that case, we can use lin-
ear regression to smooth out the pieces. In practice,
this can work very well when the piecewise approxi-
mations were reasonably accurate. For example, on
some songs, it can return a tempo within 0.01 beats
per minute of the correct value, which gives errors of
less than 10ms for the beats throughout the whole
song.

This can go awry when one or more of the piece-
wise approximations are incorrect, though. One way
to correct for this is to use outlier detection on the
approximate tempos. I assume the tempo detection
will take the shape of a Gaussian, with a mean where
the true tempo is and a small random noise for the
deviation. It turns out that assuming the measured
tempos come from one Gaussian gives a closed form
expression for the maximum likelihood Gaussian (no
EM needed). I calculate this for the measured tempos
and then ignore any tempos outside some predeter-
mined range (in this case, 2 standard deviations).

This greatly improves the output in some cases. For
example, one song from the official data is “Young
Forever”, with a correct tempo of 140 BPM. The
Naive Bayes approach with no outlier detection finds
a BPM of 139.76, a serious error that even a novice
player would notice. With Naive Bayes and outlier
detection, the calculated BPM is 139.993, a very ac-
curate result. Running the Naive Bayes algorithm
without the outlier detection on a subset of the data

gives a 38/145 accuracy rate for matching the tempo
over the entire song. Using the outlier detection, the
accuracy rate rises to 50/145.

One improvement that can be made would be to ap-
ply the outlier detection to songs that do not have a
constant tempo. Other future directions include im-
proving the usability of the SVM by using PCA and
by trying a polynomial kernel.

A completely different approach, which was not im-
plemented, would be to train a classifier that only
accepts spectra of a certain tempo. We then find a
strong beat and then take the spectrum of a cou-
ple second interval of the song in the region of that
beat. The spectrum would then be expanded or com-
pressed until the new classifier accepted it; the dila-
tion needed would indicate the actual tempo of the
song.

4 Step Timing

Once the tempo is known, the next task is to figure
out where in the song the steps should go. Tradi-
tionally, if you know where the start and the end
of a given beat are, there are six places a Dance
Dance Revolution song can have a step. These are
the downbeat, an eighth note later, one or three six-
teenth notes after the downbeat, and either triplet
after the downbeat. More than one step per beat is
possible, of course. (Recent versions introduced ad-
ditional timings, such as 32nd notes, but I ignored
these for this project.)

The goal of this section is to figure out which sub-
set of those six timings are eligible for a given beat.
To build a step chart for a particular song, we can
then use a greedy approach to add more steps until
no more step times have an acceptably strong signal
or until the steps produced meet a given difficulty
criteria.

I tried three different approaches to find scores for the
six timings, but none of them gave very satisfactory

3



results.

The first method used features very similar to that
used in the previous task, “Determining Tempo”. In
this case, though, I considered the time range from
just before the start of a beat to just after the start of
the next beat in the music. These beats are then fed
to a battery of Naive Bayes classifiers, one for each
possible type of beat.

For example, it is very common in DDR step charts
to have one step per beat, on the downbeat. One
classifier out of the battery of classifiers takes as pos-
itive examples beats in which the downbeat is eligible
for a step. Negative examples are beats in which the
downbeat is not eligible for a step. Other beat pat-
terns include pairs of eighth notes, an eighth note rest
and an eighth note, and every imaginable subset of
triplets or sixteenth notes.

As ground truth for this approach, I used the official
step charts for the known songs that I have. If any
of the possible step charts had a particular pattern
for a given beat, I treated this as a positive training
example. I also treated it as a positive training ex-
ample for simplifications that would make sense to
a user. For example, “1, and a 2, and a 3” can be
simplified to “1 and 2 and 3” or to “1 2 3”, but not to
“1, a 2, a 3”, which would sound unusual to a player.
Otherwise, the beat was a negative example.

There are a couple problems with this approach.
First, just because no step chart “realizes” a particu-
lar step pattern doesn’t mean it wouldn’t be suitable
for that beat. For example, there are many songs
available in which a sequence of eighth notes might
be a reasonable pattern, but the ground truth step
charts do not have those eighth notes. Accordingly,
the classifier for eighth note runs will have many false
negatives in its training data. Very rarely will there
be a false positive in the training data, though. The
result is that the trained classifiers are very conser-
vative. Unfortunately, increasing the recall is not a
solution, as the test data with negative scores near
the threshold will be a mix of false negatives which
were learned because of the bad training data and

correct negatives which we do not want to turn into
false positives.

Another problem is that many beat patterns are
very rare. For example, the triplet pattern corre-
sponding to swung eighth notes is relatively common:
O oO o. . . The reflection of that pattern, Oo Oo . . . ,
does not occur anywhere in the set of songs I have.

Considering these problems, it is not surprising that
the classifiers that were successfully trained only give
an accuracy of 60% . . . 70%, and some classifiers that
might be desired were simply impossible to train
given the lack of data.

Another method I tried was to train one classifier that
would give a score to any individual part of the step.
The same classifier could be used to see if a step was
suitable on the downbeat, on the eighth note after the
downbeat, or any of the other possible subdivisions.
Unfortunately, this classifier wound up learning the
very simple rule of only ever accepting downbeats as
a way of maximizing the training score.

I plotted precision-recall curve to see how to make
it more effective, but the curve made it clear the
amount of information in the classifier was rather low.
Increasing the recall meant that too many false posi-
tives were mixed in with the new correct positives.
As steps that are placed where they don’t belong
are almost unplayable, it is important to keep a high
precision; however, with a high precision, it is very
difficult to get enough signal to place an interesting
number of steps.

The third method I attempted, which was the one I fi-
nally used, was to train six classifiers that each tested
one part of the subbeat. This method may actually
be the “right” method, as it allows the step place-
ment routine to distinguish between how important
each individual part of the beat is. Unfortunately,
it too suffered from the problem of unclean training
data. The overall accuracy of the various classifiers
averages out to 66%, not a very good result.

Once again, the fundamental problem seems to be
with the data set. One of the problems in our learning

4



theory problem set covered the idea of training in
a setting where the truth labels are flipped with a
random probability. Here, however, the flipping only
ever occurs in one direction. This seems to cause the
classifier to evenly mix the true negatives and the
false negatives in terms of score.

The right solution would be to have an experienced
player hand check the data and give the beat subdi-
visions labels. I haven’t done this yet, as it would
take several days to do for the current data set. My
hope is to find some kind of distributed solution in-
volving getting fans of the game online to help solve
the problem, although I haven’t done that yet, either.

5 Step Placement / Difficulty
Assessment

Despite these problems with the step timing, the al-
gorithm still comes up with interesting step patterns
some of the time. When that happens, placing the
actual steps is easy, although it might still be inter-
esting to say a few words about that.

The basic assumption is that when a player is playing
the game, there are some transitions in foot position
that are easy to make and some that are harder to
make. However, it is rare for a song to increase in dif-
ficulty by introducing harder foot patterns, as those
simply aren’t “fun” to play. The normal way to in-
crease difficulty is to throw more and more steps at
the player, still involving mostly “easy” transitions. I
built a Markov chain using my own knowledge of the
game in which the transitions from one foot position
to another were given different weights based on how
easy it was to make that transition. An interesting
extenstion might have been to learn a HMM from the
given data, but I did not explore this idea.

In order to avoid adding too many steps during this
process, I used a linear classifier (least squares re-
gression) to assess the difficulty of the song. Then, I
greedily added steps by adding the step of the next

highest signal from the step timing classifier until the
linear classifier said the song was hard enough (a user
parameter to the program).

The linear classifier used as features the number of
steps in the part of the step chart with the highest
step density. By measuring this over a couple differ-
ent window sizes, this gave a reasonable description
of the difficulty of a song. Once again, the ground
truth data was the official DDR data, this time using
the song difficulty labels for each step chart. This
actually led to a high, but acceptable error rate. The
classifier would rarely get the step chart difficulty ex-
actly correct, but it would almost always be within 1
of the correct value.

A better way to do this would have been to use some-
thing such as libsvm’s regression model on the same
feature space, but this hardly seemed worth it con-
sidering the problems were elsewhere in the project.

One thing I did do to improve the step selection pro-
cess was to run the step scores found in the previous
section through a K-means algorithm. Then, instead
of incrementally adding one step at a time, I took all
of the steps at the same signal strength. The idea
was that this would causes beats that sound similar
to have the same step pattern, which would improve
the overall quality of the step charts. It was hard
to judge how effect this was, though; the problems
described in the previous task meant that there not
many finished products to compare with or without
K-means.

6 Conclusion

The three step process described here gives the basis
for a good method for making a previously unknown
song compatible with (freeware versions of) DDR.
Unfortunately, problems with the data used in the
second step prevented the algorithm from being very
successful. The hope is that building a new data set
with more human input will give a program that does
a credible job of creating new DDR step charts.

5



7 Acknowledgements

BemaniStyle: http://www.bemanisyle.com/

Libsvm: http://www.csie.ntu.edu.tw/ cjlin/libsvm

Stepmania: http://www.stepmania.com/

SVM light: http://svmlight.joachims.org/

FMod API, OpenCV, GFlags

Python, Visual Studio, Emacs, etc.

Professor Ng and the CS 229 staff

6


