
CS229: Machine Learning, Stanford University Fall 2008

Query Segmentation using Supervised Learning

 Asif Makhani Takahiro Aoyama
asifm@stanford.edu taoyama@stanford.edu

1 Introduction
Improving both recall and precision to return the specific
results that the user originally intended to find is an
important aspect of search engine improvements. One
component of this problem is related to translating the
users’ intention to the best query sent to a search engine in
order to get the most relevant results. For example, if a
user is looking for the cheapest 8 GB flash drive, she may
enter the keywords: {cheap 8 GB flash drive} or {sale 8 GB
USB drive} into the search box. A search engine attempts
to derive the query intent from the keywords as well as any
user behavior information such as the previous query and
could construct a new structured query in order to retrieve
the most relevant results.

There are many techniques to translate the original query to
reflect the users’ intent such as query expansion and query
segmentation. In the case of query expansion, new terms
are generated (as additions or replacements) to construct a
revised query based on the context of the original query. In
the case of query segmentation, the query terms are divided
into individual phrases and semantic units from the
sequence of user's query terms.

The focus of our research is to develop a novel way using
supervised machine learning to segment the original
queries into a set of phrases. For example, the query {
cheap 8 GB flash drive} can be segmented into 3 distinct
segments as { (cheap) (8 GB) (flash drive) }. Generating
the segments allows us to provide the necessary hints to a
search engine to improve its relevance by ranking
documents (eg. web pages) with the segments higher than
the documents in which the terms of a segment are not
adjacent.

One way to achieve that is to translate the query to specify
phrases in order to increase precision. That is, (cheap 8
GB flash drive) becomes (cheap “8 GB” “flash drive”).
Alternatively, if the above reduces recall, one can build a
search engine where the segmentation is provided as
additional hints used only during ranking by boosting
documents containing a closer proximity of the segment
terms.

There are also other potential applications of query
segmentation such as providing search suggestions and

spelling correction. By computing and storing a collection
of known segments from previous user queries, a search
engine can find and suggest the segment “closest” to the
current query. For eg., the term harry can be mapped to
“harry potter” as a suggestion. Similarly, the query “britany
spears” can be mapped to a spelling correction of “britney
spears” (using edit distance as a method of defining
closeness).

2 Related Work
Interestingly, many researchers have worked on the query
segmentation problems in different ways. Risvik et
al.(2003) approached the problem by combining the
frequency count of a segment and the mutual information
(MI) between pairs of words in the segment in a heuristic
scoring function. In other NLP-based approaches to query
segmentation, Tan and Peng (2008) used a generative
query model using EM optimization to estimate n-gram
frequencies in order to recover a query's underlying
concepts that compose its original segmented form.
Bergsma and Wang (2007) went beyond simple N-gram
count based features by building upon previous NLP work in
noun compound bracketing.

3 Approach
We addressed the query segmentation problem as a binary
classification problem. For each query q = (t1,t2,…,tn) where
ti is a query term, we extract all possible segments S = {S1,
S2 … Sn} where Si = “tk ,tk+1,…,tp“ is a segment limited to
adjacent terms. For this study, we limited the set to
segments of size two. For example, for q = (cheap 8 GB
flash drive), S = {cheap 8, 8 GB, GB flash, flash drive}.
Each input segment Si is characterized by a set of feature

ℜ∈)(ix and has a binary output },{)(10∈iy such that the
segment Si is a relevant segment if and only if 1=)(iy . So in
the case of the above example, “8 GB” and “flash drive”
would be classified as relevant segments, and “cheap 8”
and “GB flash” as not.

We used queries sampled from AOL query logs (discussed
in detail in section 5) with the relevant segments identified,
as training data to produce a model using linear regression
to predict which segment of a test query is relevant. For

each segment, we computed the input x is a list of features
and the output y is the binary classification.

Using logistic regression, we have the following log-
likelihood function:

))(log()()(log)()()()()(iiii
m

i
xhyxhyl −−+∑=

=
11

1
θ (1)

We want to maximize likelihood function)(θl ,

where)()()(....)(k
k xxxh θθθθθ +++= 2

2
1

10 . We
estimated the parameters using the Newton-Raphson
algorithm for optimizing the likelihood function)(θl . The
θ ’s we learned are applied to find the decision boundary to
classify Si.

)(: θθθ θ lH ∇−= −1 , where
ji

ij

l
H

θθ
θ
∂∂

∂
=

)(2

 (2)

Table 1. Examples of inputs and outputs
Query PMI

web
PMI
wiki

PMI
AOL

Proximity … y

ohio
state

0.68323 1.61073 6.02425 1 … 1

ohio
movie

-5.1510 0 -
0.98073

60 … 0

4 Features
We used multiple input features to characterize a segment
Si. where each feature represented the correlation of the
terms in a segment (e.g. Distance between two terms in a
document, adjacency of terms, and mutual information
between terms). As a primary association features, we
used Pointwise Mutual Information (PMI) and found it to be
both powerful and simple to compute.

)(P)(P
)(P

log),(PMI
21

21
21 tt

tt
tt

⋅
= (3)

where
documents in the wordsof#

 of occurence of#
)(P i

i
t

t = and

documents in the pairs all of#

 of occurence of#
)(P 21

21
tt

tt =

The following distinct features were computed for each
segment:

1. PMI based on # results using web search – query
order preserved

2. PMI based on # results using web search - order
not preserved

3. PMI based on # of pair occurrences in a document
corpus – query order preserved

4. PMI based on # of pair occurrences in a document
corpus – order not preserved

5. PMI based on # of pair occurrences using a query
corpus – query order preserved

6. PMI based on # of pair occurrences using a query
corpus –order not preserved

7. Proximity of terms in the document corpus

Features (1-6) are PMI using the different data sources
(web search engine, document corpus, query corpus) with
consideration on the order of the terms in the query. In
addition to PMI features, we compute the proximity feature
(7) using the distance between terms in a document-based
corpus. Since the distance between terms is different in
different pages, we assume that distance of terms in the
document corpus is given as average of the minimum
distance in each document in the corpus:

21

th
21

21 & containing documents of#
 doc iin & b/w DistanceSmallest

),(Prox
tt

tt
tt ∑= (4)

5 Data

5.1 Training and Testing
Training and test data is a collection of (~1000) queries
adapted from the AOL query dataset (Bergsma et al., 2007)
with the relevant segments identified to train and test our
system. Data contains set of segmented queries and click-
URL as seen in Figure 1. For each query with relevant
segments identified, we generated both relevant and non-
relevant segments. For example, “schools blue” in Figure 1
would be extracted as a non-relevant segment.

Figure 1. Segmented query logs and click-URL

Since our study was limited to segments of size 2, we
dropped the data involving larger relevant segments. That
is, in the example in Figure 1, a relevant segment “west
Virginia state university” does not necessarily imply that all
adjacent segments of size 2 are relevant (eg. Virginia state).

5.2 Data Sources
We used the following data sources to compute our
features:

a) Web Search Index (using “Alexa Web Search”)

We used web search using the Alexa Web search service to
compute PMI based on the number of the search results.

T
ttNtttt)"("

pages webof # total
""for resultssearch webof#)(P 2121

21 ==

where N(q) = # of results for the query “q” and T is the total
of web pages (estimated at 5 billion in the case of Alexa’s
search index). Thus, we have

)"("log)"("loglog)"("log
/)"("*/)"("

/)"("log)(PMI

2121

21

21
21

tNtNTttN
TtNTtN

TttNtt

−−+=

=

In the cases of features where order is not preserved, we
consider both possible orders:

T
ttNttNtt)"(")"(")(P 1221

21
+

=

b) Wikipedia Release Version

In addition to the web search index, Wikipedia Release
Version 0.7 [**] is used as a raw document corpus.
Wikipedia Release Version is a collection of good quality
titles (3152 articles, 10 million words). The motivation of
using document-type corpus is to extract the context
information, such as words sequence and distance between
words, not readily available when using an external search
index.

We used the document corpus to compute PMI based on
the number of pair occurrences of terms in a segment as
well as proximity function based on the distance between
terms.

c) AOL query logs

The set of AOL query database (Pass et al., 2006) was also
utilized in order to capture the users’ behavior for searching,
which is not captured in document based corpus. This data
source includes ~20M search queries from 650k real users,
containing users’ anonymous ID, query issued by users,
time when query was provided, the rank and URL of a
website that user clicked. For the purpose of computing
PMI based on the number of pair occurrences of terms in a
segment, users’ query is only used.

We decided to use both a document-based corpus and a
query-based corpus as both has their own tradeoffs. A
document corpus such as the entire web provides high
coverage but can be costly to compute advance features. A
query based corpus, on the other hand, is more
manageable but provides less coverage due to its
sparseness. However, a query based corpus is much more
representative of a users’ intention. In general, we believe
that a combination of data sources to get high coverage as
well as representation.

6 Evaluation
Our evaluation criteria is based on standard information
retrieval metrics of Recall, Precision and F-measure. For
each test run, we compare the segments classified as
relevant with the actual total relevant segments.

7 Results
We experimented to build an optimal model by focusing on
the computed features.

Figure 2: Individual Features

As shown in Figure 2, we first built the model with a single
feature and attempted optimizations through various feature
combinations as shown in Figure 3 (see Appendix 1 for the
results).

In the case of individual features, the feature with both the
highest F-measure (73.69%) and highest precision
(80.37%) was based on web search with query order
preserved. This is mostly related to a high coverage
available in a web search index. The feature with the
highest recall (73.3%) was based on proximity score using
the Wikipedia corpus. The high recall was due to the high
coverage achieved when looking at the distance between
the terms as a metric and not limiting to adjacent terms
only. However, while recall was highest in this feature,
precision was the lowest (55.9%) as two terms in the same
document may be related but cannot always be considered
a relevant segment.

|segments}{relevant |

|segments}relevant d{classifie segments}{relevant |
Recall

∩
=

|segments}relevant d{classifie|

|segments}relevant d{classifie segments}{relevant |
Precision

∩
=

)Recall(Precision

Recall)*Precision(
2measure-F

+
×=

Figure 3: Feature Combinations

Combining features together resulted in improvements in
several different ways. Limiting to features that preserve
query order resulted in a higher precision (80.52%) and a
higher F-measure (72.74%) than features that don’t
preserve query order (precision = 78.44%, F-measure =
71.46%). This emphasizes the point that order matters in
user query segmentation (eg. “new york” is a relevant
segment but not “york new”).

Due to the sparseness of data in the query logs, document
based features were superior to query based features. At
the same time, features computed using the Wikipedia
document corpus had the lowest recall (28.84%). This is
mostly due to limited data but also because wikipedia
corpus may not be representative of web search queries
which include a significant number of entertainment and
shopping related searches that are not captured by
Wikipedia.

Web search features had a higher F-measure than other
features from other data sources due to the high coverage
(5 billion web pages vs 3152 wikipedia articles) as well as
additional search engine features such as stopping,
stemming, synonyms and punctuation handling that a
typical web search engine provides to improve relevance.
Since the Wikipedia and query log based features were
computed using basic string matching without any
sophisticated normalization, this lowered recall as variations
of a term present in the corpus were not matched.

The best result (F-measure = 75.13%, Precision = 78.2%,
Recall = 72.3%) was achieved by combining the web
search features with the proximity score feature based on
distance between terms in the Wikipedia corpus. This
outperforms query segmentation algorithms using MI (F-
measure = 61.6%) as well as other language modeling
approaches shown by Tan and Peng (2008) resulting in an
F-measure of 67.1% and 71.8% with EM optimization. Our
result does underperform when compared with other more
sophisticated algorithms such as language modeling with
EM optimization augmented with Wikipedia knowledge1

 (F-
measure = 80.1%).

8 Future work
The current approach can potentially be improved
significantly by using a larger and more representative
document corpus for term pair and proximity features. One
approach could be to limit the training and feature data to a
particular domain or subject (eg. electronics or history) in
order to have a representative yet manageable corpus.

Also, future experiments would need to normalize queries
and corpus using standard features such as stemming,
stopping, punctuation handling in order to increase recall.

Other areas for future work include developing a model for
segments of any size (not just 2) as well as considering
non-adjacent segments which could help towards query
reordering to increase precision. Furthermore, developing a
segmentation model that takes into account query context
would be beneficial as effective segmentation can be
obtained by incorporating the search domain as well as
looking at other terms in the current query as well as
previous queries.

9 Acknowledgement
We would like to acknowledge Shane Bergsma (University
of Alberta) for making available segmented AOL query logs
used for training and testing.

10 References
1. Tan and Peng (2008): Unsupervised Query

Segmentation Using Generative Language Models and
Wikipedia

2. Bergsma and Wang (2007): Learning Noun Phrase
Query Segmentation: Query and Feature Data used in
Experiments

3. Wikipedia Release Version:
http://en.wikipedia.org/wiki/Wikipedia:Release_Version

4. “Alexa Web Search” web service:
(http://aws.amazon.com/alexawebsearch/)

11 Appendix

A. Classification results using Individual Features

Table 1: Individual Features

B. Classification results using Feature combinations

 Features Recall Precision F‐measure
1 All Features that preserve order 0.6634 0.8052 0.7274

2 All Features that don’t preserve order 0.6563 0.7844 0.7146

3 All Document Based Features 0.6875 0.7896 0.735

4 All Query based features 0.4929 0.6831 0.5726

5 Search Engine (Alexa) based Features 0.6918 0.8076 0.7452

6 Raw Corpus (wikipedia) based Features 0.2884 0.7632 0.4186

7 Best Recall Feature + Best Precision Feature 0.7159 0.779 0.7461

8 Top 3 Features (1,2,3) from Table 1 0.723 0.7819 0.7513

Table 2: Feature combinations

 Feature Recall Precision F‐measure

1 PMI using Alexa web search, order matters 0.6804 0.8037 0.7369
2 PMI using Alexa web search, order does not matter 0.6477 0.7972 0.7147
3 Proximity score using Wikipedia corpus 0.733 0.559 0.6343
4 PMI (term pairs) using Wikipedia, order doesn’t

matter
0.294 0.7724 0.4259

5 PMI (term pairs) using Wikipedia, order matters 0.2983 0.7394 0.4251
6 PMI (term pairs) using AOL query logs, order

matters
0.4901 0.6886 0.5726

7 PMI (term pairs) using AOL query logs, order doesn’t
matter

0.4872 0.6874 0.5702

