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1 Introduction 
Improving both recall and precision to return the specific 
results that the user originally intended to find is an 
important aspect of search engine improvements.  One 
component of this problem is related to translating the 
users’ intention to the best query sent to a search engine in 
order to get the most relevant results.  For example, if a 
user is looking for the cheapest 8 GB flash drive, she may 
enter the keywords:  {cheap 8 GB flash drive} or {sale 8 GB 
USB drive} into the search box.  A search engine attempts 
to derive the query intent from the keywords as well as any 
user behavior information such as the previous query and 
could construct a new structured query in order to retrieve 
the most relevant results.   

There are many techniques to translate the original query to 
reflect the users’ intent such as query expansion and query 
segmentation.  In the case of query expansion, new terms 
are generated (as additions or replacements) to construct a 
revised query based on the context of the original query.  In 
the case of query segmentation, the query terms are divided 
into individual phrases and semantic units from the 
sequence of user's query terms.   

The focus of our research is to develop a novel way using 
supervised machine learning to segment the original 
queries into a set of phrases.  For example, the query { 
cheap 8 GB flash drive} can be segmented into 3 distinct 
segments as { (cheap) (8 GB) (flash drive) }.   Generating 
the segments allows us to provide the necessary hints to a 
search engine to improve its relevance by ranking 
documents (eg. web pages) with the segments higher than 
the documents in which the terms of a segment are not 
adjacent.   

One way to achieve that is to translate the query to specify 
phrases in order to increase precision.  That is, (cheap 8 
GB flash drive) becomes (cheap “8 GB” “flash drive”).  
Alternatively, if the above reduces recall, one can build a 
search engine where the segmentation is provided as 
additional hints used only during ranking by boosting 
documents containing a closer proximity of the segment 
terms. 

There are also other potential applications of query 
segmentation such as providing search suggestions and 

spelling correction.   By computing and storing a collection 
of known segments from previous user queries, a search 
engine can find and suggest the segment “closest” to the 
current query. For eg., the term harry can be mapped to 
“harry potter” as a suggestion.  Similarly, the query “britany 
spears” can be mapped to a spelling correction of “britney 
spears” (using edit distance as a method of defining 
closeness). 

2 Related Work 
Interestingly, many researchers have worked on the query 
segmentation problems in different ways.  Risvik et 
al.(2003) approached the problem by combining the 
frequency count of a segment and the mutual information 
(MI) between pairs of words in the segment in a heuristic 
scoring function.  In other NLP-based approaches to query 
segmentation, Tan and Peng (2008) used a generative 
query model using EM optimization to estimate n-gram 
frequencies in order to recover a query's underlying 
concepts that compose its original segmented form.  
Bergsma and Wang (2007) went beyond simple N-gram 
count based features by building upon previous NLP work in 
noun compound bracketing. 

3 Approach 
We addressed the query segmentation problem as a binary 
classification problem.  For each query q = (t1,t2,…,tn) where 
ti is a query term, we extract all possible segments S = {S1, 
S2 …  Sn} where Si = “tk ,tk+1,…,tp“  is a segment limited to 
adjacent terms.  For this study, we limited the set to 
segments of size two. For example, for q = (cheap 8  GB 
flash drive), S = {cheap 8, 8 GB, GB flash, flash drive}. 
Each input segment Si is characterized by a set of feature 

ℜ∈)(ix  and has a binary output },{)( 10∈iy  such that the 
segment Si is a relevant segment if and only if 1=)(iy .  So in 
the case of the above example, “8 GB” and “flash drive” 
would be classified as relevant segments, and “cheap 8” 
and “GB flash” as not.   

We used queries sampled from AOL query logs (discussed 
in detail in section 5) with the relevant segments identified, 
as training data to produce a model using linear regression 
to predict which segment of a test query is relevant.  For 



each segment, we computed the input x is a list of features 
and the output y is the binary classification.   

Using logistic regression, we have the following log-
likelihood function:  
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estimated the parameters using the Newton-Raphson 
algorithm for optimizing the likelihood function )(θl .  The 
θ ’s we learned are applied to find the decision boundary to 
classify Si. 
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Table 1. Examples of inputs and outputs 
Query PMI  

web 
PMI 
wiki 

PMI 
AOL 

Proximity … y 

ohio 
state 

0.68323 1.61073 6.02425 1 … 1 

ohio 
movie 

-5.1510 0 -
0.98073 

60 … 0 

 

4 Features 
We used multiple input features to characterize a segment 
Si.  where each feature represented the correlation of the 
terms in a segment (e.g.  Distance between two terms in a 
document, adjacency of terms, and mutual information 
between terms).  As a primary association features, we 
used Pointwise Mutual Information (PMI) and found it to be 
both powerful and simple to compute.   
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The following distinct features were computed for each 
segment: 
 

1. PMI based on # results using web search – query 
order preserved 

2. PMI based on # results using web search - order 
not preserved 

3. PMI based on # of pair occurrences in a document 
corpus – query order preserved 

4. PMI based on # of pair occurrences in a document 
corpus – order not preserved 

5. PMI based on # of pair occurrences using a query 
corpus – query order preserved 

6. PMI based on # of pair occurrences using a query 
corpus –order not preserved 

7. Proximity of terms in the document corpus 
 
Features (1-6) are PMI using the different data sources 
(web search engine, document corpus, query corpus) with 
consideration on the order of the terms in the query.  In 
addition to PMI features, we compute the proximity feature 
(7) using the distance between terms in a document-based 
corpus.  Since the distance between terms is different in 
different pages, we assume that distance of terms in the 
document corpus is given as average of the minimum 
distance in each document in the corpus:  
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5 Data 

5.1 Training and Testing  
Training and test data is a collection of (~1000) queries 
adapted from the AOL query dataset (Bergsma et al., 2007) 
with the relevant segments identified to train and test our 
system.  Data contains set of segmented queries and click-
URL as seen in Figure 1.  For each query with relevant 
segments identified, we generated both relevant and non-
relevant segments.   For example, “schools blue” in Figure 1 
would be extracted as a non-relevant segment. 

 
Figure 1.  Segmented query logs and click-URL 

Since our study was limited to segments of size 2, we 
dropped the data involving larger relevant segments.  That 
is, in the example in Figure 1, a relevant segment “west 
Virginia state university” does not necessarily imply that all 
adjacent segments of size 2 are relevant (eg. Virginia state). 

5.2 Data Sources 
We used the following data sources to compute our 
features:   

a) Web Search Index (using “Alexa Web Search”) 

We used web search using the Alexa Web search service to 
compute PMI based on the number of the search results. 
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where N(q) = # of results for the query “q” and T is the total 
# of web pages (estimated at 5 billion in the case of Alexa’s 
search index).  Thus, we have 
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In the cases of features where order is not preserved, we 
consider both possible orders:  
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b) Wikipedia Release Version 

In addition to the web search index, Wikipedia Release 
Version 0.7 [**] is used as a raw document corpus. 
Wikipedia Release Version is a collection of good quality 
titles (3152 articles, 10 million words).  The motivation of 
using document-type corpus is to extract the context 
information, such as words sequence and distance between 
words, not readily available when using an external search 
index.   

We used  the document corpus to compute PMI based on 
the number of pair occurrences of terms in a segment as 
well as proximity function based on the distance between 
terms. 

c) AOL query logs 

The set of AOL query database (Pass et al., 2006) was also 
utilized in order to capture the users’ behavior for searching, 
which is not captured in document based corpus. This data 
source includes ~20M search queries from 650k real users, 
containing users’ anonymous ID, query issued by users, 
time when query was provided, the rank and URL of a 
website that user clicked.  For the purpose of computing 
PMI based on the number of pair occurrences of terms in a 
segment, users’ query is only used.  

We decided to use both a document-based corpus and a 
query-based corpus as both has their own tradeoffs.  A 
document corpus such as the entire web provides high 
coverage but can be costly to compute advance features.  A 
query based corpus, on the other hand, is more 
manageable but provides less coverage due to its 
sparseness.  However, a query based corpus is much more 
representative of a users’ intention.  In general, we believe 
that a combination of data sources to get high coverage as 
well as representation. 

6 Evaluation 
Our evaluation criteria is based on standard information 
retrieval metrics of Recall, Precision and F-measure.  For 
each test run, we compare the segments classified as 
relevant with the actual total relevant segments. 

  

 

 

 

 

7 Results 
We experimented to build an optimal model by focusing on 
the computed features.   

Figure 2:  Individual Features 

As shown in Figure 2, we first built the model with a single 
feature and attempted optimizations through various feature 
combinations as shown in Figure 3 (see Appendix 1 for the 
results ).  
 
In the case of individual features, the feature with both the 
highest F-measure (73.69%) and highest precision 
(80.37%) was based on web search with query order 
preserved.  This is mostly related to a high coverage 
available in a web search index.  The feature with the 
highest recall (73.3%) was based on proximity score using 
the Wikipedia corpus.  The high recall was due to the high 
coverage achieved when looking at the distance between 
the terms as a metric and not limiting to adjacent terms 
only.  However, while recall was highest in this feature, 
precision was the lowest (55.9%) as two terms in the same 
document may be related but cannot always be considered 
a relevant segment. 
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Figure 3:  Feature Combinations 

Combining features together resulted in improvements in 
several different ways.  Limiting to features that preserve 
query order resulted in a higher precision (80.52%) and a 
higher F-measure (72.74%) than features that don’t 
preserve query order (precision = 78.44%, F-measure = 
71.46%).  This emphasizes the point that order matters in 
user query segmentation (eg. “new york” is a relevant 
segment but not “york new”).   

Due to the sparseness of data in the query logs, document 
based features were superior to query based features.  At 
the same time, features computed using the Wikipedia 
document corpus had the lowest recall (28.84%).  This is 
mostly due to limited data but also because wikipedia 
corpus may not be representative of web search queries 
which include a significant number of entertainment and 
shopping related searches that are not captured by 
Wikipedia.  

Web search features had a higher F-measure than other 
features from other data sources due to the high coverage 
(5 billion web pages vs 3152 wikipedia articles) as well as 
additional search engine features such as stopping, 
stemming, synonyms and punctuation handling that a 
typical web search engine provides to improve relevance.  
Since the Wikipedia and query log based features were 
computed using basic string matching without any 
sophisticated normalization, this lowered recall as variations 
of a term present in the corpus were not matched. 

The best result (F-measure = 75.13%, Precision = 78.2%, 
Recall = 72.3%) was achieved by combining the web 
search features with the proximity score feature based on 
distance between terms in the Wikipedia corpus.   This 
outperforms query segmentation algorithms using MI (F-
measure = 61.6%) as well as other language modeling 
approaches shown by Tan and Peng (2008) resulting in an 
F-measure of 67.1% and 71.8% with EM optimization.  Our 
result does underperform when compared with other more 
sophisticated algorithms such as language modeling with 
EM optimization augmented with Wikipedia knowledge1

 (F-
measure = 80.1%).  

8 Future work 
The current approach can potentially be improved 
significantly by using a larger and more representative 
document corpus for term pair and proximity features.  One 
approach could be to limit the training and feature data to a 
particular domain or subject (eg. electronics or history) in 
order to have a representative yet manageable corpus.   

Also, future experiments would need to normalize queries 
and corpus using standard features such as stemming, 
stopping, punctuation handling in order to increase recall. 

Other areas for future work include developing a model for 
segments of any size (not just 2) as well as considering 
non-adjacent segments which could help towards query 
reordering to increase precision.  Furthermore, developing a 
segmentation model that takes into account query context 
would be beneficial as effective segmentation can be 
obtained by incorporating the search domain as well as 
looking at other terms in the current query as well as 
previous queries.    
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11 Appendix

 

A.  Classification results using Individual Features 
 

 

 

 

 

 

 

Table 1:  Individual Features 

 

B. Classification results using Feature combinations 
 

   Features   Recall   Precision   F‐measure  
1 All Features that preserve order  0.6634 0.8052 0.7274

2 All Features that don’t preserve order  0.6563 0.7844 0.7146

3 All Document Based Features  0.6875 0.7896 0.735 

4 All Query based features  0.4929 0.6831 0.5726

5 Search Engine (Alexa) based Features  0.6918 0.8076 0.7452

6 Raw Corpus (wikipedia) based Features  0.2884 0.7632 0.4186

7 Best Recall Feature + Best Precision Feature  0.7159 0.779 0.7461

8 Top 3 Features (1,2,3) from Table 1 0.723 0.7819 0.7513

Table 2:  Feature combinations 

 

   Feature   Recall   Precision   F‐measure  

1 PMI using Alexa web search, order matters  0.6804 0.8037 0.7369 
2 PMI using Alexa web search, order does not matter 0.6477 0.7972 0.7147 
3 Proximity score using Wikipedia corpus 0.733 0.559 0.6343 
4 PMI (term pairs) using Wikipedia, order doesn’t 

matter  
0.294 0.7724 0.4259 

5 PMI (term pairs) using Wikipedia, order matters 0.2983 0.7394 0.4251 
6 PMI (term pairs) using AOL query logs, order 

matters  
0.4901 0.6886 0.5726 

7 PMI (term pairs) using AOL query logs, order doesn’t 
matter  

0.4872 0.6874 0.5702 


