
Exploiting a database to predict the in-flight stability
of the F-16

David Amsallem and Julien Cortial

December 12, 2008

1 Introduction

Among the critical phenomena that have to be taken into account when an airplane is designed, flutter is
perhaps the hardest to assess. This spurious aeroelastic behavior of the aircraft only appears at certain flying
speeds and is highly sensitive with respect to the aerodynamic and structural design of the airplane. While
the study of the flutter of an aircraft used to be exclusively done experimentally, aeroelastic computational
methods have been developed and successfully applied to full-aircraft configurations in the last 10 years.
These computations involve expensive, non-linear, large-scale (millions of degrees of freedom), multiphysics
simulations and can only be applied to a few carefully-chosen configurations. In those computations, the
output quantity of interest is typically the transient behavior of the lift of the aircraft from which flutter can
be assessed. In order to address the cost issue, reduced-order modeling methods such as principal component
analysis (PCA) have been successfully applied to the flutter problem. These computational methods are able
to capture the main properties of the system such as the linear stability of the aircraft at a much lower cost
than the full-order simulations [1].

However, these reduced-order models (ROMs) are not robust with respect to the flight condition and
hence have to be rebuilt when any parameter is modified. To alleviate the computational burden, a database
approach has been recently proposed: First, a limited number of reference flight conditions are chosen and
the corresponding ROMs are built offline. A cheap online interpolation is used to output a ROM adapted to
the considered input parameters. The effectiveness and the robustness of the method has been proved when
applied to the aeroelastic behavior of two full aircraft configurations (F-16 and F-18/A) [2].

The prediction for a particular input relied so far on an educated guess as well as an ad-hoc trial-and-
error process in order to determine the interpolation parameters such as the number of points to use as well
as their location. The choice of these parameters is critical as the adapted ROM can lead to accurate or
inaccurate time responses as shown in Figure 1. The first interpolated ROM (in red) gives a meaningless
approximation of the reference time response shown in blue whereas the second one (in green) is a good
approximation. In this work, we will always use the error in L2-norm between the responses as an accuracy
criterion.

The main objective of the project is to bring the framework one step closer to an industrial-strength
implementation, which could ideally be treated as a black-box system by the final user instead of requiring
an extensive knowledge of the underlying principles. The ultimate goal would be to enable real-time flutter
assessment. This implies to be able to exploit the discrete database, used as a training set, to reliably predict
the physical behavior at any arbitrary input feature in the domain of interest.

This report is organized as follows: First we present the problem specificities and the anticipated diffi-
culties derived from empirical experience. Then we describe the training methodology that was developed
concurrently with a cross-validation process. Finally we show that the resulting framework can be used to
make accurate predictions in a realistic test case.

2 Overview

The solution vector for the flow around the aircraft at a given flight condition has Ndof = 2, 019, 595 entries,
each corresponding to one degree of freedom (dof) of an accurate numerical model for the considered physical
system. However, this full-order model can be reduced using the PCA method by projection onto a subspace
of dimension Nrom = 90. When the reduced space is properly chosen, experience has shown that this ROM is
sufficient to investigate the flutter phenomenon of the aircraft at a specific flight condition that depends on 2
parameters, namely the speed of the aircraft (Mach number) and its attitude (angle of attack). The training

1



Figure 1: Comparison of the lift time-response computed directly and two time-responses computed using
two different interpolated ROMs.

set considered in this project is therefore a database of such ROMs constructed for a F-16 configuration,
where each training example corresponds to the mapping of a given flight condition to the corresponding
reduced basis stored as a Ndof ×Nrom matrix.

While the considered problem has only 2 scalar input features, it exhibits the following specific properties:

• The output variables may change arbitrarily fast when the input features change, which may lead to
inaccurate predictions or even to ill-posed interpolation schemes if the training examples are too far
apart;

• Because of the high computational costs, it is desirable 1) to perform as much preprocessing as possible
to ensure an efficient online interpolation and 2) to limit the amount of offline computations as well.

Both of these observations lead us to consider only local interpolation schemes. Therefore, we postulate that
the exploitation of a database should begin with the definition a series of clusters in which we can reasonably
expect to derive meaningful local interpolation schemes.

Furthermore, since our experience so far has clearly shown that extrapolation was defective, we want to
make sure that a proper interpolation is used on any point of the domain of interest. Thus it appears more
relevant to define clusters in terms of subdomains covering the domain of interest in the feature space.

To sum up, our goal is to determine a unique and accurate interpolation scheme for each subdomain of
the parameter space.

3 Training phase

3.1 Database construction

Using 32 CPUs on a computational cluster, it takes about 30 minutes to compute each one of the 46 entries
in the database, which are reported as blue dots in Figure (2a): The convex hull (shown as a blue line) in
the parameter space (Mach number and angle of attack) corresponds to the domain of interest.

3.2 Triangulation and dual cells construction

The main goal is to partition the parameter domain in cells such that each cell contains one and only one
training point and such that the union of all these cells covers all the convex hull, except a very limited
region along its boundaries. This proceeds in two steps:

• Step 1: Triangulate the set of points in the database using Delaunay’s triangulation. The resulting
triangles are shown in blue in Figure (2b).

2



• Step 2: Consider the set of the centers of gravity of the triangles from step 1. For each interior point in
the database, define its dual cell as the polygon whose vertices are the centers of gravity of the adjacent
triangles. The resulting dual cells are reported in red in Figure (2b). Notice that the dual cells cover
the interior of the database and that each cell contains one and only one point (shown in green in the
figure).

3.3 Clustering

The idea is to define several clusters of training examples via the cells defined previously. These cells are first
partitioned into groups using a variant of the k-means algorithm. Then, for each of these groups, a cluster
is defined by the set of points inside every cell of the group as well as every neighboring point.

The k-means algorithm is here applied to the set of dual cells in order to partition this set into clusters.
To balance accuracy, exhaustivity and computational cost, we have determined that it is optimal to have
about 10 points in each database subset, which means that each cluster of dual cells must have between 2
and 4 dual cells. This gives therefore an upper and a lower bounds for the number of cells in any given
cluster. The algorithm proceeds as follows.

• Step 1: Specify an a-priori number of clusters k, as well as lower and upper bounds on the number of
cells in each cluster.

• Step 2: Randomly determine the initial k cluster centers.

• Step 3: Run the k-means clustering algorithm on the set of cells until convergence. The cell centers
are used to compute the distances.

• Step 4: Check that every cluster has a valid number of points. If any cluster has too many points,
a new cluster is added, its initial center being randomly chosen in the original cluster. If any cluster
does not have enough points, it is simply removed.

• Step 5: If at least one cluster does not have the required size, go back to Step 3. Otherwise terminate
the algorithm.

The resulting grouping of the dual cells is reported in Figure (2c). 11 clusters have been created, each
one containing between 2 and 4 cells and between 9 and 13 points of the database, after inclusion of the
neighboring points.

3.4 In-cluster cross-validation

Inside each cluster, a cross-validation process is used to select the best local model inside each cell. For the
sake of simplicity and to limit the computational time, two different interpolation models are defined:

• M1 : Interpolation using N1 = 4 pre-computed points.

• M2 : Interpolation using N2 = 5 pre-computed points.

Each cluster C includes interior points xi, i = 1, ..., niC and boundary points x̄i, i = 1, ..., nbC . Let us then
define the singletons Si = {xi}, for i = 1, ..., niC and the set of boundary points S̄ = {x̄i, i = 1, ..., nbC}.
Leave-one-out cross-validation is then applied as follows:

• Evaluate each model Mi, i = 1, 2:
For j = 1, ..., niC :
Train the model Mi on Tj = S1∪···∪Sj−1∪Sj+1∪···∪SniC∪S̄ = C\Sj , that is perform 10 interpolations
using Ni points randomly chosen in Tj . Compare the 10 responses obtained by interpolation to the
response obtained directly at the training point and retain the most accurate one in the L2-norm error.
The corresponding interpolation scheme (set of points that were used in the interpolation) becomes
the hypothesis hij .
Denote by ε̂sj (hij) the L2-norm error between the direct response at Sj and the one obtained by
interpolation using the hypothesis hij .
Compute the generalized estimation error for the model Mi.

• Pick the model Mi with the lowest estimated generalization error and for each cell Sj assign the
corresponding interpolation method as the interpolation method to be used whenever interpolation is
required inside the cell.

3



The interpolation parameters determined using this algorithm are shown in Figure (2d) and their corre-
sponding retained models in Figure (2e). In Figure (2d), for each interior point represented by a dot in the
figure, the corresponding set of interpolation point is shown as a polygon of the same color enclosing it. In
Figure (2e), the cells where the model M1 has been retained are reported in blue and the one for model M2

are in red.
In conclusion, this training step has assigned to each cell a unique interpolation scheme to be used whenever
an arbitrary ROM whose input parameters belong to the cell is desired.

(a) Training database and domain of interest (b) Triangulation and corresponding dual cells

(c) A possible set of groups of cells (d) Retained local interpolations schemes

(e) Local interpolation models (f) Test points for the prediction phase

Figure 2: Training and prediction phases for the F-16 model

4



4 Prediction

We take 5 points in the input feature domain representing a “realistic” flight test and compare the predicted
ROM given by our methodology to the (supposedly) accurate ROM obtained by a direct method. These 5
points are represented as the 5 red dots in the parameter space in Figure (2f).

Test point # 1 2 3 4 5
Relative error (%) 1.49 1.26 0.55 1.52 0.81

Table 1: Accuracy of the interpolated ROM versus the ROM obtained by a direct method

The relative error of the time-dependent stability analysis is given in Table 1. It can be shown that the
results obtained by interpolation are very accurate. The corresponding time-histories of the lift at the test
point 2 using the direct and the interpolation methods are shown in Figure (3). Very good agreement can
be seen as the error is of the same magnitude as the intrinsic error of a ROM versus a full-order model.

Figure 3: Lift time-histories comparison for test point 2.

5 Conclusion

The presented method enables a full-scale and accurate database exploitation for real aircraft stability
investigation, which is of great importance for in-flight flutter prevention. An interesting and important
extension of this work would be the definition of an improved database generation process. For instance,
when the produced prediction is not considered adequate, the database should be automatically locally
refined. The feasibility of a completely automated data gathering process could also be investigated.

References

[1] Lieu, T., Farhat, C. and Lesoinne, M., “Reduced-order fluid/structure modeling of a complete aircraft
configuration”, Comput. Methods Appl. Mech Engrg., Vol. 195, 2006, pp. 5730-5742.

[2] Amsallem, D. and Farhat, C., “Interpolation method for adapting reduced-order models and application
to aeroelasticity”, AAIA Journal, Vol. 46, No. 7, 2008, pp. 1803-1813.

5


