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Background 

After the release of the human genome and many other genomes, new insights have emerged about the 

complexity of the human genome.  While only about 1.2% of the genome code for proteins [1-3], evidence from 

sequence conservation and expression data suggest that at least 5% of the genome is functional [4-6].  Given that 

these conserved non-coding elements are not genes but reside among genes, they are therefore believed to 

comprise the regulatory machinery that governs temporal expression of the genes.  These non-gene functional 

genomic regions are then called putative cis-regulatory elements (CRE’s).  Although many biological experiments 

confirmed that CRE’s do perform such task in the genome, the question remains: which genes do these putative 

cis-regulatory elements regulate? 

While the most accurate way to make associations between CRE’s and genes that they regulate, 

conducting a biological experiment can be costly in terms of time and effort and is not guaranteed to yield 

meaningful results.  Furthermore, most experiments were motivated by the heuristic that each CRE should regulate 

the gene most proximal to it.  Even though biologists are able to discover some gene-CRE associations based on 

this heuristic, the frontier is currently limited to the genes closest to the CRE’s.  On the other hand, a handful set of 

experiments [7-8] have shown that CRE’s tend to cluster around genes’ transcription start sites (TSS) and co-

regulate target genes not necessarily closest to it but goes as far as one million base pairs away (Figure 1).  Thus, 

machine learning algorithms, particularly clustering algorithms, can help exploring such cases, thus surpassing the 

frontier that impedes advancement in biological study.  In this project, we would like to apply various clustering 

algorithms to provide alternative guidelines for further biological experiments that will identify the associations 

between putative CRE’s and the genes that they regulate, which will lead to discovery of biological basis of genetic 

diseases and subsequently the cures for them. 

 

Figure 1 : The yellow histogram shows the distribution of CRE’s over the genomic regions centered at the reference sequence of gene. 

(Human March 2006 Assembly. chr1:81,117180-83,367,191 ) 

Preliminary Stage 

Methods  

The genomic locations of CRE’s and genes were extracted from UCSC Genome Browser, with courtesy to 

Prof. Gill Bejerano’s Lab, Department of Developmental Biology and Department of Computer Science, Stanford 

University.  Since biological findings show that CRE’s that are proximally located tend to co-regulate the same 

genes, it is rational to cluster CRE’s together and then assign each of them to a gene.  Based on this heuristic, we 

chose k-means clustering algorithm to be one of our preliminary algorithms.  The k-means algorithm was run to 

associate regulatory elements with genes based on their transcription starting sites (TSS).  Since there are 25,552 

gene loci over all chromosomes in our extracted dataset, every CRE would be assigned to one of the 25,552 



centroids.  For each chromosome, the centroids were initialized to the starting position of the genes.  Each CRE 

was assigned to the closest centroid, and then centroids were updated.  After the convergence, we assigned each 

cluster to the gene closest to its centroid. 

Moreover, it is observed that CRE’s are roughly normally distributed around a sequence of gene (Figure 

1).  Given this particular distribution of the CRE’s, another reasonable choice of clustering algorithm is E-M with 

mixture of Gaussians.  By fitting multiple Gaussians over genomic regions, we should be able to cluster CRE’s and 

assign them to the gene within that region.  Since this algorithm requires a lot of computational power, we could 

not run this algorithm on the chromosomes with a large number of genes.  We only selected chromosome 11, 18, 

19, and 20 because of their smaller sizes but relative abundance of known associations and insulators (Table 1) 

and their ratios between number of known associations and number of all CRE’s are the highest. 

Evaluation 

In every stage of improving the clustering algorithms, we evaluate the performances of the algorithms 

and compare them against some baseline in the following ways: 

1. Known Association Test 1: The result and the baseline will be verified with 81 experimentally 

confirmed associations hand-curated by T.H. Cheung et al. [9], and the error rates will be calculated.  

This source of associations is the most reliable because each association is supported by specific 

biological literature.  Nevertheless, a subset of genes is more heavily studied than others, so the data 

from this source does not represent randomly sampled associations.  This test, which relies on this set 

of data, might not reflect the true performance of the algorithm in question. 

2. Known Association Test 2: There are a few thousand known associations in ORegAnno (Open 

Regulatory Annotation Database) [10-11] but the set contains some indirect association between 

CRE’s and genes.  After incomplete entries and indirect associations were screened out, we managed 

to extract 248 associations and would use these known associations to verify the output from the 

algorithms. Note that we do not combine known associations with the ones from T.H. Cheung et al. 

because the curation method of this second set of data appears less reliable than the first. 

3. Insulator Test: Evidence from biological experiments [12] shows that a protein called CCCTC-binding 

factor (CTCF) acts as an insulator and blocks regulation of a gene by CRE’s on the opposite side of the 

CTCF binding site.  In other words, an association cannot be correct if the genes and the CRE’s are 

not in between the same pair of insulators.  We define the insulator test errors as the proportion of 

insulators intersecting the clusters.  Monte Carlo Simulation was performed over random partitioning 

of the genomic regions with number of partitions (hence, clusters) equal to the number of genes.  

Using this data, we estimated the mean and variance of the insulator test error from a random 

partition over genomic regions and could then produce 99% confidence intervals for random 

partitions.  Since our clustering algorithms do not take the CTCF’s into account, testing their insulator 

test error against the random error is used to support the sensitivity of the algorithm.  The null 

hypothesis is that the clustering algorithm functions independently from the insulators and, thus, 

should have random error.  A low p value, then, supports the algorithm as capturing real information. 

Results 

 For the k-means algorithm, the Known Association Test 1 accuracy, Known Association Test 2 accuracy, 

and Insulator Test error are .66, .46, and .431 respectively (Table 1).  Our k-means algorithm did significantly 

better than our baseline of random partitions in every test but one (p<.0001).  Although the accuracy rate is not 

perfect, k-means algorithm proves to be a good antecedent algorithm upon which we can improve.  

 The error rate of the E-M algorithm with mixtures of Gaussian from the Insulator Test is .659, which is 

significantly worse than k-means.  Moreover, the accuracy rates from Known Associate Test 1 and Known 

Association Test 2 are zero.  This results because E-M is inherently a clustering algorithm, but the clusters stray 

from one-to-one correspondence with the genes themselves.  Therefore, we disregarded this algorithm from our 

further consideration. 

 



Table 1 Test Results of simple k-means algorithm 

Known Association Test 1  Known Association Test 2 Insulator Test 
Chr 

#Known Associations Accuracy rate #Known Associations Accuracy Rate Error Rate 

1 9 0.44 2 1.00 0.402 
2 5 0.80 16 0.25 0.503 
3 3 0.67 0 n/a 0.510 
4 3 0.67 0 n/a 0.529 
5 3 1.00 23 0.74 0.560 
6 5 0.40 12 0.50 0.462 
7 7 0.86 29 0.52 0.373 
8 3 0.33 5 0.20 0.478 
9 3 0.33 10 0.70 0.451 

10 3 1.00 0 n/a 0.511 
11 3 1.00 45 0.49 0.502 
12 4 0.75 3 1.00 0.430 
13 0 n/a 5 0.80 0.415 
14 3 1.00 0 n/a 0.473 
15 3 0.33 7 0.71 0.458 
16 2 1.00 8 0.25 0.331 
17 5 1.00 0 n/a 0.369 
18 2 1.00 4 0.25 0.634 
19 8 0.38 13 0.15 0.169 
20 1 1.00 6 0.33 0.338 
21 0 n/a 24 0.42 0.308 
22 2 0.50 10 0.50 0.202 
Y 0 n/a 0 n/a 0.414 
X 3 0.33 26 0.23 0.402 

Overall 80 0.66 248 0.46 0.431 

 

Improvements upon k-means Algorithm – Weighted k-means 

Methods  

According to the closest-gene heuristic that biologists in this field rely on, each CRE tends to regulate the 

gene closest to it.  Our simple k-means algorithm is oblivious of gene locations and thus fails to capture this effect.  

In this stage, we would like to combine the advantage of closest-gene heuristic and the advantage of k-means 

algorithm by implementing a weighted k-means algorithm.  In this algorithm, we place actual weights at the gene 

locations, which are then used in the k-means algorithm as data points themselves.  The only difference is that the 

centroid update step occurs over weighted data (with the genes now included), so rather than summing the 

distances, we sum the products of distance and weight.  We kept the weights at 1 for all of the CRE’s, then 

arbitrarily assigned weights of powers of 10 to the genes themselves.  The assignment of the genes was returned 

after convergence, and then we processed the clusters into assignments in the same way as with the standard k-

means algorithm.  The greater the weight at the gene, the more likely that CRE’s around that gene will cluster 

together around a centroid near the gene.  Because our algorithms have been applied to a chromosome in its 

entirety, this weighting helps keep the clusters local, rather than being free to roam around the entire 

chromosome. 

Results 

Table 2 Comparison of the accuracy rate in predicting gene-CRE association between unweighted k-means and weighted k-means 

Known Association Test 1 Known Association Test 2 

Chr 

# Unweighted Weighted 10
2 

Weighted10
3 

Weighted10
4 

# Unweighted Weighted 10
2 

Weighted10
3 

Weighted10
4 

1 2 1.00 1.00 1.00 1.00 9 0.44 0.78 0.89 0.89 

2 16 0.25 0.44 0.56 0.63 5 0.80 1.00 0.80 1.00 

3 0 n/a n/a n/a n/a 3 0.67 0.67 0.67 0.67 

4 0 n/a n/a n/a n/a 3 0.67 0.67 0.67 0.67 
5 23 0.74 0.78 0.78 0.78 3 1.00 1.00 1.00 1.00 

6 12 0.50 0.50 0.50 0.50 5 0.40 1.00 1.00 1.00 

7 29 0.52 0.83 0.83 0.79 7 0.86 0.86 1.00 1.00 

8 5 0.20 0.80 1.00 1.00 3 0.33 0.33 0.67 1.00 

9 10 0.70 0.70 0.70 0.70 3 0.33 0.67 0.67 0.67 
10 0 n/a n/a n/a n/a 3 1.00 0.67 1.00 1.00 

11 45 0.49 0.56 0.58 0.60 3 1.00 1.00 1.00 1.00 

12 3 1.00 1.00 1.00 1.00 4 0.75 0.75 0.75 0.75 

13 5 0.80 0.80 0.80 0.80 0 n/a n/a n/a n/a 
14 0 n/a n/a n/a n/a 3 1.00 1.00 1.00 1.00 

15 7 0.71 0.86 0.86 0.86 3 0.33 0.67 0.67 0.67 

16 8 0.25 0.25 0.25 0.25 2 1.00 1.00 1.00 1.00 

17 0 n/a n/a n/a n/a 5 1.00 1.00 1.00 1.00 
18 4 0.25 0.75 0.75 0.75 2 1.00 1.00 1.00 1.00 

19 13 0.15 0.15 0.15 0.15 8 0.38 0.50 0.50 0.50 



20 6 0.33 0.33 0.33 0.50 1 1.00 1.00 1.00 1.00 

21 24 0.42 0.46 0.46 0.46 0 n/a n/a n/a n/a 

22 10 0.50 0.50 0.50 0.50 2 0.50 0.50 0.50 0.50 
Y 0 n/a n/a n/a n/a 0 n/a n/a n/a n/a 

X 26 0.23 0.27 0.27 0.27 3 0.33 0.67 0.67 0.67 

 

From Table 2, weighted k-means algorithm performed better than unweighted k-means algorithm.  We 

observed that the accuracy rate rises as we increase the weight.  As mentioned in the Evaluation section, the 

experiments that comprise the data set for Known Association Test are suggested by the closest-gene heuristic.  

The increase in the accuracy rate can be misleading because the data sets that the two tests depend on bias 

towards the closest-gene heuristic.  Therefore, if we put too much weight to k-means algorithm, the algorithm will 

turn into the closest-gene heuristic and will miss the goal to explore the associations left uncaptured by the 

heuristic.  By the results from Insulator Test (Figure 2), we selected 103-weighted k-means to be our optimal 

algorithm in clustering CRE’s and assigning the genes, as it improves upon unweighted k-mean in terms of 

Insulator Test Errors yet maintains the ability to discover novel associations. 
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Figure 2 Summary of Insulator Test Errors for the various algorithms.  The errors for k-means algorithms are significantly below the 

errors from random partitioning, and we find the p-values for the unweighted k-means algorithm to be near 0. 

Contribution of Weighted k-means 

We found 21 cases where weighted k-means algorithm made correct associations but the closest-gene 

heuristic made incorrect associations.  For instance, at chr7:27,183,842-27,197,569, the closest-gene heuristic 

wrongly assigns the CRE to the gene NR_002795, which is the closest gene.  On the other hand, the weighted k-

means algorithm correctly assigns it to gene HOXA11 because the assignment takes into account the surrounding 

CRE’s, which turn out to be clustered near HOXA11 (Figure 3).  The one of most exceptional cases that we have 

found is that our weighted k-means algorithm correctly associates the gene and the CRE that are 100,000 bases 

apart.  Because the weighted k-means algorithm does not depend solely on the distance, CRE’s that are remotely 

located can be associated with the genes.  An example of such case is chr11:64,103,642-64,271,641.  The CRE 

was inaccurately assigned to SLC22A12 by the closest-gene heuristic, but the weighted k-means algorithm makes 

the correct association (Figure 4).  



 

Figure 3 The closest heuristic assigns the CRE to the gene NR_002795 (red arrow), but k-means algorithm correctly assigns it to HOXA11 

(tan arrow) (UCSC Human March 2006 Assembly. Chr7:27,183,842-27,197,569). 

 

Figure 4 The closest heuristic assigns the CRE to the gene SLC22A12 (red arrow), but k-means correctly assigns it to NRXN2 (tan arrow) 

(UCSC Human March 2006 Assembly. Chr11:64,103,642-64,271,641). 

However, because of the low accuracy rate in Known Association Tests, doubt can be cast on the validity 

of the result from our algorithm.  As mentioned earlier, the data sets used by Known Association Tests are based 

on the heuristic and therefore do not represent random samples of all genes.  In order to verify that our weighted 

k-means algorithm is a valid algorithm in clustering and assigning CRE’s to the genes that they regulate, we 

implemented a statistical tool for this purpose.  This tool is called Enrichment Test of Association (ETA).  ETA is 

based on a study by Bejerano et al. (2004) [13] that a subset of CRE’s known as the Ultraconserved Elements 

involve in some key transcriptional and developmental functions.  Since the Ultraconserved Elements regulate 

genes that share some common functions, we expect to observe overrepresentation of genes with those functions 

being regulated (i.e. associated) by the Ultraconserved Elements.  Therefore, a clustering and gene-CRE 

associating algorithm is valid if the algorithm associates the Ultraconserved Elements to the genes that share these 

key transcriptional and developmental functions.  ETA uses Hypergeometric Test to assess this enrichment and 

report Bonferroni-corrected p value for each annotation term.  If the p value is less than .05 for some key functions 

of the Ultraconserved Elements, then the algorithm is valid.  We ran ETA on the weighted k-means algorithm that 

we invented, and it turns out that the algorithm is able to capture some key features of the Ultraconserved 



Elements (Table 3).  As a result, the algorithm can be used to predict gene-CRE association especially in the case 

where the CRE and the gene that it regulates are very far apart. 

To explore the full advantage of ETA, we then traced back the list of gene-CRE associations that yields the 

enrichment.  We found a list of Ultraconserved Elements that are not previously known to be involved in some 

functions, for example sequence-specific DNA binding and RNA binding.  These predicted associations can then be 

tested further in experiments. 

Table 3 Gene Ontology terms that are enriched in Ultraconserved Elements 

Gene Ontology ID Description P Value 

Enrichment in Exonic1 Ultraconserved Elements 

GO:0003723 RNA binding 9.680709e-06 

GO:0003676 nucleic acid binding 1.172123e-05 

GO:0030528 transcription regulator activity 2.165738e-05 
GO:0003700 transcription factor activity 3.821301e-05 

GO:0008380 RNA splicing 6.662757e-04 

GO:0016070 RNA metabolism 7.088915e-04 

GO:0006397 mRNA processing 1.925729e-03 
GO:0043565 sequence-specific DNA binding 5.431610e-03 

GO:0016071 mRNA metabolism 5.810479e-03 

GO:0003677 DNA binding 9.263524e-03 

GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism 9.686886e-03 

Enrichment in Intergenic2 Ultraconserved Elements 

GO:0043565 sequence-specific DNA binding 1.198226e-02 

GO:0006350 transcription 3.720624e-02 

GO:0045449 regulation of transcription 4.403441e-02 

GO:0007222 frizzled signaling pathway 4.541888e-02 

Conclusion and Future Direction 

Our weighted k-means algorithm successfully expands the boundary of exploration. Even though the 

accuracy rate of this algorithm is not affirmingly high, biologists can combine facts from previous biological 

experiments and the prediction that the weighted k-means algorithm has made in order to guide further research. 

If the prediction and the biological facts seem to be consistent, then researchers can make a rational attempt to 

confirm the association by conducting biological experiments. The genomic regions that researchers afford to 

explore will be less restrained with the combined guidelines from biology and machine learning algorithm. 

Researchers can be more confident in their endeavor to dig through the fortress of CRE’s that is far away from the 

comfort zone of the closest-heuristic. 

In addition to escalating the possibilities of exploring the unexplored, results from the algorithm will lead 

to experiments that will potentially provide more data on known association and give a good foundation for 

developing the algorithm. The Known Association Tests that we used were not quite reliable because most of the 

known associations were discovered based on the heuristics. If the data sets contained more associations where 

the gene and CRE’s are more than 100,000 bases apart, the Known Association Tests would become more reliable 

and would facilitate further development of algorithms.  
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1
 Exonic Ultraconserved Elements are Ultraconserved Elements that overlaps protein coding portion of genes 

2 
Intergenic Ultraconserved Elements are Ultraconserved Elements that locate between genes 


