
SOUND DESIGN LEARNING FOR FREQUENCY MODULATION
SYNTHESIS PARAMETERS

Juan-Pablo Cáceres
Center for Computer Research in Music and Acoustics (CCRMA)

Stanford University
jcaceres@ccrma.stanford.edu

1. OVERVIEW

Sound design is an extremely slow processes that requires
a significant amount of experience to achieve specific goals.
Through a process of trial and error the designer uses an
existing synthesis engine or program its own to create a
sound that is closer to a specified target. The sound target
can be either an existing sound or a verbal specification.

Frequency Modulation (FM) Synthesis [1] uses a very
efficient algorithm to match a wide variety of sounds. This
technique has the advantage that through the use of a small
number of control parameters, it can achieve a wide range
of timbers. This flexibility makes it also hard to get to the
“correct” parameters for a specific sound target.

A general heuristic to match synthesis parameters of
a fixed sound engine to an arbitrary sound target is pro-
posed. After the generation of training data from the syn-
thesis engine, PCA is perform to extract relevant metrics
and a combination of k-means and gradient descent is used
to get an estimation.

2. PREVIOUS WORK

Andrew Horner [3] has applied genetic algorithms to match
FM synthesis parameters. The engine topology can also
vary with the added complexity of model selection. Ge-
netic algorithms used lead to good results but are compu-
tationally expensive and slow, making them not suitable
for real-time purposes.

A more general approach has been presented by Matt
Hoffman [2], where simulated annealing is used as an al-
ternative to genetic algorithms to match synthesis param-
eters. These algorithms are also very slow, so a database
is filled and a general locality-sensitive hashing is used to
get fast approximate lookups.

In general the problem with models with variable syn-
thesis engine is that the more complex the more accurately
the target can be matched. This naturally leads to spectral
modeling synthesis [4], a generic approach to match any
sound through spectral features. This is very accurate but
very slow and the mapping problem of how to control the
synthesis parameters is an open question.

3. PROPOSED FRAMEWORK

This work proposed a general approach to match param-
eters to a fixed synthesis engine. A fixed topology is pre-
ferred over an evolutionary one because:

• training and database generation based on the topol-
ogy and parameters range is possible.

• a better control can be achieve in real-time perfor-
mances without the need of a higher level mapping.

The steps consist on the following stages that will be
discussed in details in what follows:

1. Define the synthesis engine and range of control pa-
rameters

2. Generate random training data spanning the space
of the control parameters

3. Chose a feature vector and a distance metric and
cost function to evaluate similarity

4. Perform iterative k-means clustering on the training
set to generate a decision tree based on feature sim-
ilarity

5. For a target sound, do a tree search on the tree database
and use that as a starting point to perform gradient
descent to reach the local minimum of the cost func-
tion

3.1. Synthesis engine

Synthesis engines like the ones available on commercial
synthesizers or ad hoc computer synthesis graphs can be
used, e.g., FM synthesis and subtractive synthesis. The
control parameters are completely specified within a range.

3.2. Training data

To generate training data we simply generate random con-
trol parameters values (each of them within its specific
range) so that we span a wide variety in the control space.
Some algorithms like FM synthesis have strong nonlin-
earities, so in general what we want is to maximize the
variety of features. To do that we do PCA and clustering
on the feature space and not on the control space.



3.3. Feature vector and a distance metric

To match parameters for steady-state sounds, spectral fea-
ture are much more relevant than time features. In general,
any spectral feature may be use that provides a good rep-
resentation of the spectral characteristic of the family of
sounds generated by the specified synthesis engine. PCA
is then performed on the chosen feature vector to reduce
dimensionality in the evaluation of similarity.

It has been showed that the MFCC (Mel frequency cep-
stral coefficient) is a perceptually valid metric for timbre
[6]. It has also the advantage that it incorporates PCA on
its arrangement, so performing PCA again won’t be nec-
essary. It is also more important to inform the system with
psychoacoustic features since ultimately the target sound
has to be similar psychoacoustically and not physically
(although in many situation both coincide).

The MFCC coefficients are a representation of the spec-
trum into total energy per critical band using auditory filter
banks. We use 13 coefficients that are computed with the
Auditory Toolbox [5] in Matlab.

For the purpose of matching steady-state sounds, we
define the sample mean MFCC vector c̄ as the average
of the the successive MFCC across the chosen total time
frame. The comparison between sounds is done in terms
of the norm of the difference between the target feature
vector and the estimated one.

Dc̄ = ‖c̄target − c̄estimated‖
Independently of the metric chose (others may be more

appropriate for other problems) the purpose is to minimize
Dc̄.

3.4. K-means clustering decision tree

We want to maximize the variability on the feature vector
that represents the variability of the target sounds. In the
training data we perform k-means clustering on the feature
vectors. The Spider [7] is used to do the computations in
Matlab. This is going to group the data into clusters sound
features.

The clustering is done in an iterative way, in order to
generate a decision tree for a fast lookup of the closest
match of a target sound with the sounds on the database.
The system defines a number of clusters Nc and a number
of levels Nl, so we can span a total of NcNl plus the last
level training data. For example, with 10 clusters and 3
levels, we can span a total of approximately 103 training
examples

3.5. Gradient descent

After finding the closest match in our training database
tree, we use that point as a starting point and perform gra-
dient descent to get to the local minimum. Hopefully we
are in a region where the local minimum is also the global
one. The bigger the training data, the highest the chances
that we reach the global minima.

4. FM SYNTHESIS EXAMPLE

A very simple frequency modulation engine is used as an
example. The engine consists of two sinusoids, one acting
as carrier and the other at modulator:

x(t) = A sin(2πfct+ I sin(2πfmt+ φm) + φc)

fc, fm, I are used as control parameters. fc fm have
a rango of 20 Hz to 1000 Hz and I goes from 0 to 10.
The other parameters are fixed at A = 1, φm = 0 and
φc = 0. To generate the training data, we use 128 discrete
steps on the three control parameters and generate random
combinations of them.

30000 random combinations are generated. This num-
ber is chosen to be 30 times bigget than the minimum
Nc

Nl = 103, in order to avoid having clusters without
data.

The clustering is done using 10 clusters and 3 levels.

4.1. K-means clustering

Figure 1 shows the first-level clusters of the training data.
The cluster centroids are also plotted. It is clear that the
clustering is grouping sounds with similar MFCC features.
This clustering is done again in 3 levels, with 10 cluster
groups each.

0 2 4 6 8 10 12 14
−1500

−1000

−500

0

500
K−means MFCC Clustering

MFCC number

0 2 4 6 8 10 12 14
−1500

−1000

−500

0

500
K−Means MFCC Clusters Centers

MFCC number

Figure 1. K-means clustering and cluster center for the
MFCC of the FM example

4.2. System performance

The system performance was evaluated with the genera-
tion of random parameters to generate a target sound, and
then try to match the parameters. Informal listening tests
suggests that estimation is very accurate in terms of sound
quality, but sometimes is in a slightly different pitch. This
suggest that for a future work harmonicity coefficients and
spectral centroid may be helpful in the feature vector to
make the estimated parameters more accurate.



Table 1 shows for example of target and estimated pa-
rameters. The corresponding spectrograms are shown in
Figures 2, 3, 4, 5.

We see that even when one of the parameters is far from
the global minimum (Table 1) the spectrograms are still
similar. This suggest that different configurations produce
different sounds, and even if we don’t get to the exact pa-
rameters of the original sounds, perceptually it is still ac-
ceptable.

All these examples need no more than 80 iterations,
what makes the algorithms very fast, with less than a sec-
ond to estimate the parameters in Matlab. The order of
the iterations needed for genetic algorithms and simulated
annealing is much highier.

Table 1. Center frequency FM parameter for each band.
fc fm I

Target 1 440 440 5
Estimated 1 422.3 435.2 5.0373
Target 2 100 30 3
Estimated 2 96.1 25.5 4.0488
Target 3 800 800 9
Estimated 3 831.1 806.1 2.1818
Target 4 900 100 7
Estimated 4 592.3 102.2 9.7604

Target Sound

1 2 3 4

50

100

150

200

250

Estimated Sound

1 2 3 4

50

100

150

200

250

Figure 2. Spectrogram comparison for example 1

5. CONCLUSIONS AND FUTURE WORK

A fast algorithm was implemented for a simple example
of FM synthesis. The example performs very fast and
does not require a huge database to store the training data.
However we need to review the feature vector in order to
make it more accurate. Different distance metrics that can
be tried are the raw spectrogram with reduced dimension-
ality, and the addition of harmonicity and spectral centroid
to the MFCC coefficients.

Target Sound

1 2 3 4

50

100

150

200

250

Estimated Sound

1 2 3 4

50

100

150

200

250

Figure 3. Spectrogram comparison for example 2

Target Sound

1 2 3 4

50

100

150

200

250

Estimated Sound

1 2 3 4

50

100

150

200

250

Figure 4. Spectrogram comparison for example 3

Target Sound

1 2 3 4

50

100

150

200

250

Estimated Sound

1 2 3 4

50

100

150

200

250

Figure 5. Spectrogram comparison for example 4



In some synthesis engines the use of Kernel PCA may
be useful to account for the non-linearities of the system.
A similar approach of the k-means tree implemented may
be tried using kd-tree algorithm.

Other extensions include implement more complex sys-
tems, like second order FM synthesis and use a localized
global minimum algorithm to find the global minimum in
the region given by the k-means tree estimation but with-
out getting stuck on a local minimum for systems with
strong non-linearities.

Testing the system with sounds not generated with the
system is also planned.

6. ACKNOWLEDGMENTS

I would like to thanks Hiroko Terasawa for the advice on
psychoacoustic metrics and Stefano Corazza for his valu-
able ML algorythms sugestions.

References
[1] J. Chowning. The synthesis of complex audio spectra

by means of frequency modulation. Journal of the
Audio Engineering Society, 21(7):526–534, 1973.

[2] M. Hoffman and P. R. Cook. Real-time feature-based
synthesis for live musical performance. In NIME ’07:
Proceedings of the 7th international conference on
New interfaces for musical expression, pages 309–
312, New York, NY, USA, 2007. ACM.

[3] A. Horner, J. Beauchamp, and L. Haken. Machine
tongues XVI: Genetic algorithms and their applica-
tion to FM matching synthesis. Computer Music Jour-
nal, 17(4):17–29, Winter 1993.

[4] X. Serra and J. O. Smith. Spectral modeling synthe-
sis: A sound analysis/synthesis system based on a de-
terministic plus stochastic decomposition. Computer
Music Journal, 14(4):12–24, Winter 1990.

[5] M. Slaney. Auditory toolbox, version 2. Technical
Report 1998-10, Interval Research Corporation, Palo
Alto, California, USA, 1998.

[6] H. Terasawa, J. Berger, and J. O. Smith. Using a
perceptually based timbre metric for parameter con-
trol estimation in physical modeling synthesis. In
Proceedings of International Computer Music Con-
ference, 2005.

[7] J. Weston, A. Elisseeff, G. BakIr, and F. Sinz. The
Spider.


