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1. Introduction!

In this project, we revisit the problem of 
constructing 3D structures from single still images.  
We build upon previous work done by Saxena, Sun 
and Ng [1] by improving on the inference 
techniques used in their algorithm, with the goal of 
producing 3D models that are more quantitatively 
accurate, as well as more visually pleasing. 

One area of improvement in the existing 
algorithm is the penalty function used during MAP 
inference of plane parameters.   When inferring 3D 
models from single still images, the penalty 
function is used to enforce constraints such as 
connectedness, co-planarity, and co-linearity.  
Properties of the penalty function consequently 
determine whether the transition between two 
planes in the 3D model is smooth or sharp.  The 
current penalty function, the L1 norm of the error, 
does not prefer either a smooth transition or a sharp 
transition.  As a result, the resulting 3D models 
often have walls sloping away from the ground, 
rather than standing straight up.  Our goal was to 
find a suitable penalty function that prefers a sharp 
transition over a smooth transition.   

 
Figure!1.!Graph!of!the!penalty!functions 

Another area of improvement is to make use of 
user-provided scribbles during inference so that 
the result is closer to how a human perceives the 
image.  The idea is that these scribbles could be 
used to help the algorithm make immediate 
improvements in inferring the 3D model of a given 
image.  

A subproblem to using scribbles during 
inference is finding the “correct” scribble, which is 
the one that would give optimal performance in the 
new inference algorithm.  We devised an algorithm 
that used supervised learning to make use of the 
coarse scribbles provided by users to infer 
information about other areas in the image that 
have not been filled in by scribbles. 

This report is divided into three portions, each 
describing the work that has been done in the three 
areas described.   

2. Penalty Function 

 The penalty function that is currently used, the 
L1 norm (approximated by !(x)), does not prefer 
either a smooth transition or a sharp transition. The 
goal of this portion of the project was to find a 
penalty function that prefers a sharp transition over 
a smooth one, in order to bring foreground objects 
to the front, for images where the object would 
slope into the background when using the original 
penalty function.  

Current Progress!
a.) L2 norm. We started out by implementing the 
L2 norm, to gain familiarity with the system. This 
gave a result that was not significantly different 
from the original, although it made more mistakes 
than the original in certain test images. 

 
b.) Log(1 + !(x)). We saw encouraging results 
with this penalty function. For one particular test 
image, the result was clearly better than the 
original results (see Figure 2): rather than sloping 
inward to the background, a bush in the foreground 
stayed vertical in the foreground. This shows that 
the Log(1 + !(x)) function performs better than the 
original in certain cases. For images where there 
was no clear improvement, the results from this 
function were at least as accurate as the original 



Figure!2.!!!!!!!!a)!Original!!!!!!!!!!!!!!!!b)!Log(1+"(x))!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!c)!("(x))#

The!images!above!show!the!improvement!that!the!new!penalty!functions!give!over!the!original!

results, although the two functions often made 
mistakes in different areas. 
 
c.) (!(x))". We saw similar results with this 
function: in the same test image that was 
mentioned above, the bush also came to the 
foreground. In examples without such obvious 
improvements, its performance was roughly the 
same as the Log(1 + !(x)) function and the L1 
norm.  

  
d.) Min(a, !(x)). This function is not differentiable, 
but we used the fact that: 
d.) Min(a, !(x)). This function is not differentiable, 
but we used the fact that: 
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Using gamma(x) to approximate the absolute value 
function again, we came up with an approximation 
of the Min function that was differentiable. 
Unfortunately, the results for this function were 
not usable due to numerical problems, possibly 
caused by a badly conditioned Hessian close to x = 
0. 
 

Numerical Stability 
The new penalty functions resulted in 

numerical inaccuracies at lower values of & than 
the original penalty function, where higher values 
of & give more accurate approximations of the 
absolute value function. The initial solution to cap 
the number of iterations, thus capping the value of 
&. However, this did not work for all images, since 
the threshold at which the numerical inaccuracy 
appeared was different for each image. 

To deal with this, we instead checked when the 
Hessian matrix of the penalty function became 
singular while incrementing &, then capped & at the 
value before the step where the matrix became 
singular, and reset & to that value for the next 
iteration. This meant that the penalty function 
would work for all images, while maximizing & for 
each image. 

This method also proved to be useful for the 
user-provided hints portion, since the increased 
weights caused numerical inaccuracies to appear at 
lower values of &, even when using the original 
penalty function. 



Figure!3:!Typical!results!from!our!algorithm.!The!first!three!models!are!considered!"good".!For!the!
last!model,!while!the!plane!of!the!front!of!the!house!is!separated!from!its!side!planes!as!expected,!
its!orientation!is!incorrect.!
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ked was initially done by visually inspecting 

the resulting 3D model for each image. However, 
this method is inaccurate and subjective, and it 
becomes easy to miss minor differences. To 
attempt to make testing new methods more 
objective, we generated edge maps for each result. 

These edge maps were generated from the 
duals that resulted from the penalty function. 

The higher the residual for a given pair of 
neighboring superpixels, the more likely it was that 
algorithm was classifying the edge between the 
pair as a boundary between two separate planes. 
The resulting edge maps from trial runs could be 
compared much more easily and objectively than 
visually inspecting the 3D model.  

 

W
for different properties (co

nectivity), with the idea that a penalty function 
may work better for one property than another. 
However, the results showed no significant 
improvement over using either the Log function or 
the "-norm. There were minor differences in the 
resulting 3D structure, but the differences were not 
clearly better or worse than the results from using 
non-mixed penalty functions. 

3. Inference with Scribbles!

For this portion of the 
drawing tool was provided to

red lines on top of their images – neighboring 
superpixels with the same scribble color are 
interpreted as being on the same plane, while 



neighboring superpixels with different color 
should be on different planes.   

Since the scribbles drawn by users are often 
coarse and imprecise, we have to first pre-process 
the 
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scribble image.  We do so by first filling in any 
holes encompassed by the scribble lines.  We then 
apply a non-linear filter to the scribble image, in 
which each pixel takes on the most frequent color 
in its 5x5 neighborhood.  This essentially expands 
the user-provided scribbles with inferred auxiliary 
colors.   

We then hand-tuned the weights of the 
co-planar

d in Saxena, Sun and Ng. In order to enforce 
co-planarity between two superpixels, the weights 
of the co-planarity constraints are set to high 
values. To enforce non-co-planarity, weights to 
both the co-planarity and connectivity constraints 
are set to low values, because connectivity often 
indirectly enforces co-planarity.  In addition, a 
lower weight is given to neighbors with auxiliary 
colors than to those with actual scribble colors.  

 
Results and Discussions 

W
the website and subjective

visually pleasing.  We then added scribbled 
lines to the images, and used the algorithm to 
re-infer the 3D models. 

To get a fair qualitative evaluation of the result, 
we should have collected

sites, but we were unable to publish the latest 
algorithm to the web in time to collect statistics.  
However, by visually comparing the original 
model with the new models, the modified 
algorithm improves the visual quality of the model 
in more than half of the cases.   

In all cases, the algorithm is successful in 
making planes co-planar, while 

 should not be co-planar.  However, since the 
scribble does not explicitly provide hints about the 
orientation of the planes, the algorithm sometimes 
makes certain planes that are correct in the original 
model co-planar attached to a plane with an 

incorrect orientation, thus magnifying the original 
problem (see the last sample in Figure 3).  In other 
words, the algorithm works well when the majority 
of the scribbles cover planes whose orientation 
was correct in the original model.  

For complete results, please visit: 
http://ai.stanford.edu/~gbrlhkyu/im  
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4.  On-the-Fly Learning of Scribbles

The 3D models re-inferred using the scribbles 
are only as good as the scribbles provided

refore, as described in the previous section, we 
tried using various tricks to modify the scribbles.  
However, the resulting scribble image is still 
highly dependent on original scribble.   

Therefore, to make better use of the scribbles, 
we experimented using supervised le

lligently infer the scribble on-the-fly. 
 

Learning Algorithm 
T

for each pixel on the 
want to use the information given by the user's 

scribble to infer a scribble color that should be 
assigned to this pixel.  This is a multi-class 
classification problem, and we reduce it to multiple 
binary classification problems. 

Specifically, for each scribble color c, the 
input features are the RGB valu

 the class labels are 1 if color c is scribbled on 
the pixel and 0 if otherwise.  The training data are 
all the pixels in the images that are currently filled 
in with scribbles by users.  We then model the 
relationship between the input features and class 
label using logistic regression with gradient 
descent.  The resulting learned hypothesis will then 
output the probability that the given pixel belongs 
to color c.   

After learning the hypothesis for each scribble 
color, we the

n pixel should be assigned a particular color, 
for each pixel that was not filled in by the user. 
These pixels are then assigned the color with the 
highest probability for that pixel.   



Figure!4.!Selected!
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object appeared attached to the background. We 
also succeeded in using user-provided scribbles to 
improve the quality of the result. To improve the 
results even further for cases where the provided 
scribble is very coarse or inaccurate, we 
implemented a method for inferring more 
comprehensive information from the given 
scribble. The end result is a system that gives 
better results on several samples, without 
degradation in quality for samples with no clear 
improvement. 
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scribbles from the website
ning algorithm.  We then visually evaluate 

whether the inferred scribble covers regions that 
should or should not be co-planar in the human 
eyes.   

As expected by the simplicity of the features, 
the algo

e colors.  However, it will not work well if the 
planes contain different colors (See Figure 3).   

There are many way to improve the current 
algorithm.  We can use HGV or YCbCr valu

ead of RGB values, which are known to give 
better performance for image processing.  We 
could also increase the number of features by 
looking at properties of the neighboring pixels.   

5. Conclusion!
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