
Inferring 3D Scene Structure from a Single Still Image

Gabriel Yu and Jing Chen (Advised by Ashutosh Saxena)

1. Introduction!

In this project, we revisit the problem of
constructing 3D structures from single still images.
We build upon previous work done by Saxena, Sun
and Ng [1] by improving on the inference
techniques used in their algorithm, with the goal of
producing 3D models that are more quantitatively
accurate, as well as more visually pleasing.

One area of improvement in the existing
algorithm is the penalty function used during MAP
inference of plane parameters. When inferring 3D
models from single still images, the penalty
function is used to enforce constraints such as
connectedness, co-planarity, and co-linearity.
Properties of the penalty function consequently
determine whether the transition between two
planes in the 3D model is smooth or sharp. The
current penalty function, the L1 norm of the error,
does not prefer either a smooth transition or a sharp
transition. As a result, the resulting 3D models
often have walls sloping away from the ground,
rather than standing straight up. Our goal was to
find a suitable penalty function that prefers a sharp
transition over a smooth transition.

Figure!1.!Graph!of!the!penalty!functions

Another area of improvement is to make use of
user-provided scribbles during inference so that
the result is closer to how a human perceives the
image. The idea is that these scribbles could be
used to help the algorithm make immediate
improvements in inferring the 3D model of a given
image.

A subproblem to using scribbles during
inference is finding the “correct” scribble, which is
the one that would give optimal performance in the
new inference algorithm. We devised an algorithm
that used supervised learning to make use of the
coarse scribbles provided by users to infer
information about other areas in the image that
have not been filled in by scribbles.

This report is divided into three portions, each
describing the work that has been done in the three
areas described.

2. Penalty Function

 The penalty function that is currently used, the
L1 norm (approximated by !(x)), does not prefer
either a smooth transition or a sharp transition. The
goal of this portion of the project was to find a
penalty function that prefers a sharp transition over
a smooth one, in order to bring foreground objects
to the front, for images where the object would
slope into the background when using the original
penalty function.

Current Progress!
a.) L2 norm. We started out by implementing the
L2 norm, to gain familiarity with the system. This
gave a result that was not significantly different
from the original, although it made more mistakes
than the original in certain test images.

b.) Log(1 + !(x)). We saw encouraging results
with this penalty function. For one particular test
image, the result was clearly better than the
original results (see Figure 2): rather than sloping
inward to the background, a bush in the foreground
stayed vertical in the foreground. This shows that
the Log(1 + !(x)) function performs better than the
original in certain cases. For images where there
was no clear improvement, the results from this
function were at least as accurate as the original

Figure!2.!!!!!!!!a)!Original!!!!!!!!!!!!!!!!b)!Log(1+"(x))!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!c)!("(x))#

The!images!above!show!the!improvement!that!the!new!penalty!functions!give!over!the!original!

results, although the two functions often made
mistakes in different areas.

c.) (!(x))". We saw similar results with this
function: in the same test image that was
mentioned above, the bush also came to the
foreground. In examples without such obvious
improvements, its performance was roughly the
same as the Log(1 + !(x)) function and the L1
norm.

d.) Min(a, !(x)). This function is not differentiable,
but we used the fact that:
d.) Min(a, !(x)). This function is not differentiable,
but we used the fact that:

2
||

2
),(bababaMin #

#
$

%

Using gamma(x) to approximate the absolute value
function again, we came up with an approximation
of the Min function that was differentiable.
Unfortunately, the results for this function were
not usable due to numerical problems, possibly
caused by a badly conditioned Hessian close to x =
0.

Numerical Stability
The new penalty functions resulted in

numerical inaccuracies at lower values of & than
the original penalty function, where higher values
of & give more accurate approximations of the
absolute value function. The initial solution to cap
the number of iterations, thus capping the value of
&. However, this did not work for all images, since
the threshold at which the numerical inaccuracy
appeared was different for each image.

To deal with this, we instead checked when the
Hessian matrix of the penalty function became
singular while incrementing &, then capped & at the
value before the step where the matrix became
singular, and reset & to that value for the next
iteration. This meant that the penalty function
would work for all images, while maximizing & for
each image.

This method also proved to be useful for the
user-provided hints portion, since the increased
weights caused numerical inaccuracies to appear at
lower values of &, even when using the original
penalty function.

Figure!3:!Typical!results!from!our!algorithm.!The!first!three!models!are!considered!"good".!For!the!
last!model,!while!the!plane!of!the!front!of!the!house!is!separated!from!its!side!planes!as!expected,!
its!orientation!is!incorrect.!

Edge Maps
g whether a change to the algorithm

wor

resi

Mixed Penalty Functions
e also tried using different penalty functions

-linearity, co-planarity,
con

project, an online
 let users scribble

colo

Checkin
ked was initially done by visually inspecting

the resulting 3D model for each image. However,
this method is inaccurate and subjective, and it
becomes easy to miss minor differences. To
attempt to make testing new methods more
objective, we generated edge maps for each result.

These edge maps were generated from the
duals that resulted from the penalty function.

The higher the residual for a given pair of
neighboring superpixels, the more likely it was that
algorithm was classifying the edge between the
pair as a boundary between two separate planes.
The resulting edge maps from trial runs could be
compared much more easily and objectively than
visually inspecting the 3D model.

W
for different properties (co

nectivity), with the idea that a penalty function
may work better for one property than another.
However, the results showed no significant
improvement over using either the Log function or
the "-norm. There were minor differences in the
resulting 3D structure, but the differences were not
clearly better or worse than the results from using
non-mixed penalty functions.

3. Inference with Scribbles!

For this portion of the
drawing tool was provided to

red lines on top of their images – neighboring
superpixels with the same scribble color are
interpreted as being on the same plane, while

neighboring superpixels with different color
should be on different planes.

Since the scribbles drawn by users are often
coarse and imprecise, we have to first pre-process
the

ity and connectivity constraint functions
use

e randomly picked 20 images uploaded to
ly selected those that are

not

 ratings from users in the
web

separating planes
that

ages

scribble image. We do so by first filling in any
holes encompassed by the scribble lines. We then
apply a non-linear filter to the scribble image, in
which each pixel takes on the most frequent color
in its 5x5 neighborhood. This essentially expands
the user-provided scribbles with inferred auxiliary
colors.

We then hand-tuned the weights of the
co-planar

d in Saxena, Sun and Ng. In order to enforce
co-planarity between two superpixels, the weights
of the co-planarity constraints are set to high
values. To enforce non-co-planarity, weights to
both the co-planarity and connectivity constraints
are set to low values, because connectivity often
indirectly enforces co-planarity. In addition, a
lower weight is given to neighbors with auxiliary
colors than to those with actual scribble colors.

Results and Discussions

W
the website and subjective

visually pleasing. We then added scribbled
lines to the images, and used the algorithm to
re-infer the 3D models.

To get a fair qualitative evaluation of the result,
we should have collected

sites, but we were unable to publish the latest
algorithm to the web in time to collect statistics.
However, by visually comparing the original
model with the new models, the modified
algorithm improves the visual quality of the model
in more than half of the cases.

In all cases, the algorithm is successful in
making planes co-planar, while

 should not be co-planar. However, since the
scribble does not explicitly provide hints about the
orientation of the planes, the algorithm sometimes
makes certain planes that are correct in the original
model co-planar attached to a plane with an

incorrect orientation, thus magnifying the original
problem (see the last sample in Figure 3). In other
words, the algorithm works well when the majority
of the scribbles cover planes whose orientation
was correct in the original model.

For complete results, please visit:
http://ai.stanford.edu/~gbrlhkyu/im

 by users.
The

arning to
inte

he learning problem is formulated as follows:
image not scribbled by users,

we

e of a given pixel,
and

n use it to model the probability that a
give

4. On-the-Fly Learning of Scribbles

The 3D models re-inferred using the scribbles
are only as good as the scribbles provided

refore, as described in the previous section, we
tried using various tricks to modify the scribbles.
However, the resulting scribble image is still
highly dependent on original scribble.

Therefore, to make better use of the scribbles,
we experimented using supervised le

lligently infer the scribble on-the-fly.

Learning Algorithm
T

for each pixel on the
want to use the information given by the user's

scribble to infer a scribble color that should be
assigned to this pixel. This is a multi-class
classification problem, and we reduce it to multiple
binary classification problems.

Specifically, for each scribble color c, the
input features are the RGB valu

 the class labels are 1 if color c is scribbled on
the pixel and 0 if otherwise. The training data are
all the pixels in the images that are currently filled
in with scribbles by users. We then model the
relationship between the input features and class
label using logistic regression with gradient
descent. The resulting learned hypothesis will then
output the probability that the given pixel belongs
to color c.

After learning the hypothesis for each scribble
color, we the

n pixel should be assigned a particular color,
for each pixel that was not filled in by the user.
These pixels are then assigned the color with the
highest probability for that pixel.

Figure!4.!Selected!

takes that appeared frequently for typical
images. We succeeded in finding a penalty

object appeared attached to the background. We
also succeeded in using user-provided scribbles to
improve the quality of the result. To improve the
results even further for cases where the provided
scribble is very coarse or inaccurate, we
implemented a method for inferring more
comprehensive information from the given
scribble. The end result is a system that gives
better results on several samples, without
degradation in quality for samples with no clear
improvement.

results!from!our!

d!

lls!if!
tain!the!

Results and Discussions

We randomly picked 5 sets of images and
s and use them to test the

lear

rithm works well only if each plane has the
sam

es
inst

r this project was to improve the
e original system, especially the

mis

function that gave a noticeable improvement in
performance for samples where a foreground

6. Acknowledgements!

nk Ashutosh Saxena for
the

 !

 Scene Structure from a Single

for Recognition (3dRR-07), 2007

algorithm.!!As!
seen!in!the!secon
results,!the!
algorithm!
performs!we
planes!con
same!color.!!!

scribbles from the website
ning algorithm. We then visually evaluate

whether the inferred scribble covers regions that
should or should not be co-planar in the human
eyes.

As expected by the simplicity of the features,
the algo

e colors. However, it will not work well if the
planes contain different colors (See Figure 3).

There are many way to improve the current
algorithm. We can use HGV or YCbCr valu

ead of RGB values, which are known to give
better performance for image processing. We
could also increase the number of features by
looking at properties of the neighboring pixels.

5. Conclusion!

We would like to tha
many helpful ideas and thoughtful advice that

he provided throughout the course of this project.

7. References
The goal fo

performance of th
 [1] Learning 3-D

Still Image, Ashutosh Saxena, Min Sun, Andrew
Y. Ng, In ICCV workshop on 3D Representation

