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Abstract 

Popular products often have thousands of 

reviews that contain far too much 

information for customers to digest. Our 

goal for the project is to implement a 

system that extracts opinions from these 

reviews and summarizes them in a concise 

form. This allows customers to quickly get 

an overview of a product and manufactures 

to efficiently process product feedbacks. 

 

In the past, we focused on the feature 

extraction directly on the word level. First, 

we would use association rule to extract all 

the <noun => adj.> rules and then use 

Pointwise Mutual Information to judge the 

polarization of the adjective. Processing 

directly on word level neglects the 

information contained on the sentence 

level. In this paper, we discuss how to 

extract features by first investigate on 

sentence level and then dive into the word 

level. 

 

Introduction 

Extracting features directly on word level 

neglects the information contained in the 

sentence level. For example, there might be 

a sentence such as “Today is a good day” 

appearing in the reviews. If we only 

perform the algorithm on the word level, 

we would consider <day, good> as a feature 

of the product, but obviously it is not. 

 

Here we propose a method that first 

determines which sentences in a review 

might contain product features. If we are 

confident that a sentence does have feature, 

we would further process the sentence 

using the association rule and PMI to 

extract the features. 

To judge whether a sentence has any 

features, we used several Machine Learning 

methods. We will compare the 

performance of each method. 

 

Algorithms and Implementation 

Naïve Bayesian 

Naïve Bayesian technique is a powerful 

method for classification. In our problem, 

the two classes are Review Sentences with 

product feature (C1) and Review Sentences 

without product feature (C0). 

Pr C1 =
 1{Ci = C1}

training Size
 

   Pr(C0) = 1 – Pr(C1) 

The features we used for training are 

individual words within each sentence. We 

denote each sentence as Si and each word 

as Wj. The probability of the word Si 

appearing in a sentence of class Ck is given 

by: 

P Wj Ck =
 1 Ci = Ck #{Wj  in Si}Si

  1 Ci = Ck #{Wj  in Si}SiWj

 

Since some word might never appear in 

sentences of a particular class, we do not 

want to have a sentence with 0 probability 

of being in a particular class. We deploy a 

slightly modified version of Laplace 

Smoothing where λ = 0.1 instead of 1. 

P Wj Ck 

=
 1 Ci = Ck ∗ #{Wj  in Si}Si +  0.1

  1 Ci = Ck ∗ #{Wj  in Si}SiWj +  0.1 ∗ |W|
 

Finally, we have the following Naïve 

Bayesian classifier to determine the 

probability of a sentence being in a 

particular class, using the words in that 

sentence as features: 

P C1 Si =  
P(C1)  P(Wj  in Si|C1)

 P(Ck)  P(Wj  in Si|Ck)Ck

 



 P(C0|Si) = 1 – P(C1|Si) 

To avoid underflow, we can alternatively 

use log for calculation: 

log P C1 Si  −  log(P C0 Si) 

= logP C1 − logP(C0)

+  logP(Wj  in Si|C1)

−   logP(Wj  in Si|C0) 

If the value obtained above is greater than 

0, we claim that the sentence is more likely 

to have product feature(s) than not. 

 

The words that appear more often in 

featured sentences are indicative of a 

sentence likely to have features. The 

following list contains the top feature 

indicator words from our studies: 

 

fits, convenient, strong, clips, packed, 

variable, emails, exceptional, freezes, 

glitches 

 

Conversely, the following list of words 

indicates that the sentence is likely to not 

have any product features mentioned: 

 

ordered, olympus, sell, consumers, ran, 

shopping, compete, register, replacing, 

assume 

 

Overall, we achieve an accuracy of 78% by 

training on 8600 labeled sentences and 

testing on 600 sentences. 

 

Spy EM 

Sometimes, labeled data may be hard to 

come by. This is where spies become useful. 

Given a small set of positively labeled data 

and a large set of unlabeled data, we 

designate a subset of the positive data as 

spies and unleash them into the unlabeled 

set. Then we use the same Naïve Bayesian 

algorithm that we just discussed to train a 

fake classifier pretending that the entire 

unlabeled set is negatively labeled. The 

spies will enable us to develop a threshold 

for being negative. Any sentence that is 

more unlikely to be positive than all the 

spies are considered to be Reliably Negative 

(RN). 

 

Spy Step in S-EM: 

1. RN = NULL; 

2. S = Sample(P, 15%); 

3. Us = U ∪ S; 

4. Ps = P - S; 

5. Assign each sentence in Ps class label 1; 

6. Assign each sentence in Us class label -1; 

7. NB(Us, Ps); 

8. Classify each sentence in Us using the NB 

classifier; 

9. Determine a probability threshold th 

using S; 

10. for each sentence Si ∈ Us 

11. if its probability Pr(1|Si) < th then 

12. RN = RN ∪ {Si}; 

 

After obtaining the RN set, we will run an 

EM algorithm, which is essentially an 

iterative version of the Naïve Bayesian 

algorithm. The only difference here is that 

instead of having class labels be {0, 1}, we 

use a continuous range [0, 1] for the 

probability of each sentence being in a 

particular class. The indicator functions in 

Naïve Bayesian are now probabilities 

instead. 

 

EM Step in S-EM: 

1. Assign each sentence in P the class label 1; 

2. Assign each sentence in RN class label -1; 

3. Each sentence in Q (= U - RN) is assigned a 

probabilistic label, Pr(1|Si). 

E Step: Revise P(class|sentence) 

M Step: Calculate the new P(class) and 

P(word|class) 

4.  Run the EM algorithm until it converges. 



The following plot shows test set accuracy 

as a function of EM iterations. The EM 

algorithm seems to converge after 

approximately 100 steps. 

 

Overall, S-EM achieves an accuracy of 67%. 

This is lower than Naïve Bayesian because 

we are pretending that the negatively 

labeled set is unlabeled. In a more realistic 

situation where we do have a large amount 

of unlabeled data, only using Naïve 

Bayesian will not enable us to solve the 

problem. 

 

Rocchio Method 

Rocchio Method trains the classifier by the 

following way. First, each document 𝑑 is 

represented as a vector  

𝑑 = (𝑞1, 𝑞2, 𝑞3, … , 𝑞𝑛). 

Each element 𝑞𝑖  represents a word 𝑤𝑖  in 

the document and is calculated as  

𝑞𝑖 = 𝑡𝑓𝑖 × 𝑖𝑑𝑓𝑖 

where 𝑡𝑓𝑖  is the term frequency, the 

number of times that word 𝑤𝑖  occurs in 𝑑; 

and 𝑖𝑑𝑓𝑖  is the inverse document 

frequency,  

𝑖𝑑𝑓𝑖 = log(
|𝐷|

𝑑𝑓(𝑤𝑖)
) 

Here |𝐷| is the total number of 

documents and 𝑑𝑓(𝑤𝑖) is the number of 

documents where word 𝑤𝑖  occurs at least 

once. 

 

Rocchio Method could be described as 

follows. 

1. Let 𝑐+ = 𝛼
1

|𝑃|
 

𝑑

|𝑑|𝑑∈𝑃 − 𝛽
1

|𝑁|
 

𝑑

|𝑑|𝑑∈𝑁  ; 

2. Let 𝑐− = 𝛼
1

|𝑁|
 

𝑑

|𝑑|𝑑∈𝑁 − 𝛽
1

|𝑃|
 

𝑑

|𝑑|𝑑∈𝑃  ; 

3. if <𝑐+, 𝑑′> ≤ <𝑐−, 𝑑′> 

     classify 𝑑′ as negative 

  else 

     classify 𝑑′ as positive 

 

Here, according to [Buckley et al., 1994], we 

used 𝛼 = 16 and 𝛽 = 4. Moreover, we 

used the inner product to measure the 

similarity of two 𝑑 vectors. For each test 

document, if it is more similar to positive 

𝑐+, we assign it as positive. 

 

SVM based on Rocchio 

Since in Rocchio, we only used the inner 

product to measure the similarity of two 

passages, the accuracy rate was not so 

good. Hence now we switch to using SVM, 

based on the Rocchio formulation. Let the 

training sample set be 

{ 𝑥1, 𝑦1 ,  𝑥2, 𝑦2 ,… , (𝑥𝑛 , 𝑦𝑛)}, where 𝑥𝑖  is 

the representation of a passage in 

Rocchio’s format, and 𝑦𝑖  is the label for 

the passages. To deal with noisy labels, we 

used the soft margin SVM, which is 

min
1

2
𝜔𝑇𝜔 + 𝐶  𝜉𝑖

𝑖

 

𝑠. 𝑡.   𝑦𝑖 𝜔
𝑇𝑥𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 , 𝑖 = 1, 2, …𝑛 

Here 𝐶 is the parameter that controls the 

amount of training errors allowed. 

 

We employed different types of kernels in 

SVM method – linear kernel, polynomial 

kernel and radial basis function kernel. 

Based on our training set, we compared the 

performance of each type of kernel as 

follows: 

 



Kernel Precision Recall F 

Linear 63.68 98.15 79.14 

polynom 70.17 86.28 79.38 

Gamma 68.41 100 81.12 

 

Here we use Precision, Recall, and F-score 

as the measure of performance. F score 

takes into account of both recall and 

precision, F = 2pr/(p+r). The numbers above 

are all based on the best performance for 

each method after tuning the parameters. 

 

Biased-SVM 

Up until now we assume that all samples 

are correctly tagged. However, tagging the 

data is tough and tedious and if we cannot 

get enough tagged data, the training 

algorithm would face potential over-fitting 

problems. To solve this problem, Bing et al 

proposed the LPU algorithm. It uses both 

the tagged data and untagged data. First, it 

assumes that all untagged data are negative. 

Iteratively, the algorithm would train a SVM 

to classify the positive and negative 

samples until the ratio of positive and 

negative samples converges.  

 

The problem is that, since SVM is sensitive 

to noises, if in any iteration the trained 

SVM is largely affected by noises, later ones 

would be worse.  

 

Bing et. al. proposed Biased -SVM in [Bing 

Liu, et.al 2003]. Biased-SVM formulation 

uses two parameters 𝐶+ and 𝐶− 

separately to weight positive errors and 

negative errors. Thus the problem changes 

to 

  

min
1

2
𝜔𝑇𝜔 + 𝐶+  𝜉𝑖

𝑖

 

𝑠. 𝑡.   𝑦𝑖 𝜔
𝑇𝑥𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 , 𝑖 = 1, 2, …𝑛 

 

We can vary 𝐶+ and 𝐶− separately. 

Intuitively, we give a large value for 𝐶+ 

and a small value for 𝐶−  because the 

untagged set, which is assumed to be 

negative, also contains positive data.  

We used a separate validation set to verify 

the performance of the resulting classifier 

with the selected values for C+ and C-. 

We used F score as the performance 

measure. 

 

Kernel Precision Recall F 

Linear 62.36 82.11 70.89 

polynom 64.39 79.49 71.15 

Gamma 64.07 81.17 71.61 

 

Evaluation 

Now that we have presented the five 

algorithms we used to determine if a 

Review Sentence contains a product feature, 

we would like to compare their 

performances: 

 

 

It seems that for this particular task, SVM 

with no untagged samples outperforms all 

other algorithms by achieving an accuracy 

rate of over 80%. When using spy samples, 

the performance of SVM decreases largely. 

However, since we also used iterative 

algorithm in SVM, we can see that the 

SVM’s performance is still better than S-EM. 
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Combination 

To close the loop, we would like to present 

some results outside the scope of the 

project focus, just for completeness. After 

obtaining product features, we would like 

to know if customers liked the particular 

feature or not. This can be done easily with 

an algorithm called PMI. 

 

Point-wise Mutual Information (PMI) 

algorithm uses mutual information as a 

measure of the strength of semantic 

association between two words. The 

Point-wise Mutual Information between 

two words, W1 and W2, is defined as 

follows: 

PMI W1, W2 = log(
P(W1, W2)

P W1 ∗ P(W2)
) 

Where P(W1,W2) is the probability that W1 

and W2 both occur in the same phrase. 

 

Semantic Orientation of a phrase is 

calculated as follows: 

SO(phrase) = PMI(phrase,"excellent") 

− PMI(phrase,"poor") 

 

We can use Semantic Orientation to  

Determine the polarity of a particular word. 

If the word appear more often with 

excellent, it is more likely to have a positive 

connotation. The following plot shows 

some examples: 

 

Finally, once we have obtained the product 

features as well as their relative polarity 

from the customer reviews, we can sort 

them and present them in a summary form 

as demonstrated below: 

 

PRODUCT FILE NAME : D-Link DWL-G120 

There are 40 review(s) total. 

PROS : setup (5.0) 

connection (4.0) 

price (4.0) 

card (2.0) 

connections (2.0) 

CONS:  performance (-5.0) 

port (-2.0) 

sensitivity (-2.0) 

 

Conclusion 

In this paper, we showed a two-step 

method for extracting features from 

customer reviews. As the first step, we 

would judge whether each sentence has a 

feature or not; if it does, we would further 

process the sentence and extract the 

features. The first step is mainly based on 

Machine Learning methods and the second 

step is mainly based on Data Mining and 

Natural Language Processing Methods. We 

have demonstrated in this project that it is 

tractable to determine customer opinions 

on individual product features. When all 

training data are correctly tagged, we 

showed that SVM is the best and when not 

all training data is tagged, S-EM and B-SVM 

almost have the same performance. 
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