
CUSTOMER REVIEW FEATURE EXTRACTION

Heng Ren, Jingye Wang, and Tony Wu

Abstract

Popular products often have thousands of

reviews that contain far too much

information for customers to digest. Our

goal for the project is to implement a

system that extracts opinions from these

reviews and summarizes them in a concise

form. This allows customers to quickly get

an overview of a product and manufactures

to efficiently process product feedbacks.

In the past, we focused on the feature

extraction directly on the word level. First,

we would use association rule to extract all

the <noun => adj.> rules and then use

Pointwise Mutual Information to judge the

polarization of the adjective. Processing

directly on word level neglects the

information contained on the sentence

level. In this paper, we discuss how to

extract features by first investigate on

sentence level and then dive into the word

level.

Introduction

Extracting features directly on word level

neglects the information contained in the

sentence level. For example, there might be

a sentence such as “Today is a good day”

appearing in the reviews. If we only

perform the algorithm on the word level,

we would consider <day, good> as a feature

of the product, but obviously it is not.

Here we propose a method that first

determines which sentences in a review

might contain product features. If we are

confident that a sentence does have feature,

we would further process the sentence

using the association rule and PMI to

extract the features.

To judge whether a sentence has any

features, we used several Machine Learning

methods. We will compare the

performance of each method.

Algorithms and Implementation

Naïve Bayesian

Naïve Bayesian technique is a powerful

method for classification. In our problem,

the two classes are Review Sentences with

product feature (C1) and Review Sentences

without product feature (C0).

Pr C1 =
 1{Ci = C1}

training Size

 Pr(C0) = 1 – Pr(C1)

The features we used for training are

individual words within each sentence. We

denote each sentence as Si and each word

as Wj. The probability of the word Si

appearing in a sentence of class Ck is given

by:

P Wj Ck =
 1 Ci = Ck #{Wj in Si}Si

 1 Ci = Ck #{Wj in Si}SiWj

Since some word might never appear in

sentences of a particular class, we do not

want to have a sentence with 0 probability

of being in a particular class. We deploy a

slightly modified version of Laplace

Smoothing where λ = 0.1 instead of 1.

P Wj Ck

=
 1 Ci = Ck ∗ #{Wj in Si}Si + 0.1

 1 Ci = Ck ∗ #{Wj in Si}SiWj + 0.1 ∗ |W|

Finally, we have the following Naïve

Bayesian classifier to determine the

probability of a sentence being in a

particular class, using the words in that

sentence as features:

P C1 Si =
P(C1) P(Wj in Si|C1)

 P(Ck) P(Wj in Si|Ck)Ck

 P(C0|Si) = 1 – P(C1|Si)

To avoid underflow, we can alternatively

use log for calculation:

log P C1 Si − log(P C0 Si)

= logP C1 − logP(C0)

+ logP(Wj in Si|C1)

− logP(Wj in Si|C0)

If the value obtained above is greater than

0, we claim that the sentence is more likely

to have product feature(s) than not.

The words that appear more often in

featured sentences are indicative of a

sentence likely to have features. The

following list contains the top feature

indicator words from our studies:

fits, convenient, strong, clips, packed,

variable, emails, exceptional, freezes,

glitches

Conversely, the following list of words

indicates that the sentence is likely to not

have any product features mentioned:

ordered, olympus, sell, consumers, ran,

shopping, compete, register, replacing,

assume

Overall, we achieve an accuracy of 78% by

training on 8600 labeled sentences and

testing on 600 sentences.

Spy EM

Sometimes, labeled data may be hard to

come by. This is where spies become useful.

Given a small set of positively labeled data

and a large set of unlabeled data, we

designate a subset of the positive data as

spies and unleash them into the unlabeled

set. Then we use the same Naïve Bayesian

algorithm that we just discussed to train a

fake classifier pretending that the entire

unlabeled set is negatively labeled. The

spies will enable us to develop a threshold

for being negative. Any sentence that is

more unlikely to be positive than all the

spies are considered to be Reliably Negative

(RN).

Spy Step in S-EM:

1. RN = NULL;

2. S = Sample(P, 15%);

3. Us = U ∪ S;

4. Ps = P - S;

5. Assign each sentence in Ps class label 1;

6. Assign each sentence in Us class label -1;

7. NB(Us, Ps);

8. Classify each sentence in Us using the NB

classifier;

9. Determine a probability threshold th

using S;

10. for each sentence Si ∈ Us

11. if its probability Pr(1|Si) < th then

12. RN = RN ∪ {Si};

After obtaining the RN set, we will run an

EM algorithm, which is essentially an

iterative version of the Naïve Bayesian

algorithm. The only difference here is that

instead of having class labels be {0, 1}, we

use a continuous range [0, 1] for the

probability of each sentence being in a

particular class. The indicator functions in

Naïve Bayesian are now probabilities

instead.

EM Step in S-EM:

1. Assign each sentence in P the class label 1;

2. Assign each sentence in RN class label -1;

3. Each sentence in Q (= U - RN) is assigned a

probabilistic label, Pr(1|Si).

E Step: Revise P(class|sentence)

M Step: Calculate the new P(class) and

P(word|class)

4. Run the EM algorithm until it converges.

The following plot shows test set accuracy

as a function of EM iterations. The EM

algorithm seems to converge after

approximately 100 steps.

Overall, S-EM achieves an accuracy of 67%.

This is lower than Naïve Bayesian because

we are pretending that the negatively

labeled set is unlabeled. In a more realistic

situation where we do have a large amount

of unlabeled data, only using Naïve

Bayesian will not enable us to solve the

problem.

Rocchio Method

Rocchio Method trains the classifier by the

following way. First, each document 𝑑 is

represented as a vector

𝑑 = (𝑞1, 𝑞2, 𝑞3, … , 𝑞𝑛).

Each element 𝑞𝑖 represents a word 𝑤𝑖 in

the document and is calculated as

𝑞𝑖 = 𝑡𝑓𝑖 × 𝑖𝑑𝑓𝑖

where 𝑡𝑓𝑖 is the term frequency, the

number of times that word 𝑤𝑖 occurs in 𝑑;

and 𝑖𝑑𝑓𝑖 is the inverse document

frequency,

𝑖𝑑𝑓𝑖 = log(
|𝐷|

𝑑𝑓(𝑤𝑖)
)

Here |𝐷| is the total number of

documents and 𝑑𝑓(𝑤𝑖) is the number of

documents where word 𝑤𝑖 occurs at least

once.

Rocchio Method could be described as

follows.

1. Let 𝑐+ = 𝛼
1

|𝑃|

𝑑

|𝑑|𝑑∈𝑃 − 𝛽
1

|𝑁|

𝑑

|𝑑|𝑑∈𝑁 ;

2. Let 𝑐− = 𝛼
1

|𝑁|

𝑑

|𝑑|𝑑∈𝑁 − 𝛽
1

|𝑃|

𝑑

|𝑑|𝑑∈𝑃 ;

3. if <𝑐+, 𝑑′> ≤ <𝑐−, 𝑑′>

 classify 𝑑′ as negative

 else

 classify 𝑑′ as positive

Here, according to [Buckley et al., 1994], we

used 𝛼 = 16 and 𝛽 = 4. Moreover, we

used the inner product to measure the

similarity of two 𝑑 vectors. For each test

document, if it is more similar to positive

𝑐+, we assign it as positive.

SVM based on Rocchio

Since in Rocchio, we only used the inner

product to measure the similarity of two

passages, the accuracy rate was not so

good. Hence now we switch to using SVM,

based on the Rocchio formulation. Let the

training sample set be

{ 𝑥1, 𝑦1 , 𝑥2, 𝑦2 ,… , (𝑥𝑛 , 𝑦𝑛)}, where 𝑥𝑖 is

the representation of a passage in

Rocchio’s format, and 𝑦𝑖 is the label for

the passages. To deal with noisy labels, we

used the soft margin SVM, which is

min
1

2
𝜔𝑇𝜔 + 𝐶 𝜉𝑖

𝑖

𝑠. 𝑡. 𝑦𝑖 𝜔
𝑇𝑥𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 , 𝑖 = 1, 2, …𝑛

Here 𝐶 is the parameter that controls the

amount of training errors allowed.

We employed different types of kernels in

SVM method – linear kernel, polynomial

kernel and radial basis function kernel.

Based on our training set, we compared the

performance of each type of kernel as

follows:

Kernel Precision Recall F

Linear 63.68 98.15 79.14

polynom 70.17 86.28 79.38

Gamma 68.41 100 81.12

Here we use Precision, Recall, and F-score

as the measure of performance. F score

takes into account of both recall and

precision, F = 2pr/(p+r). The numbers above

are all based on the best performance for

each method after tuning the parameters.

Biased-SVM

Up until now we assume that all samples

are correctly tagged. However, tagging the

data is tough and tedious and if we cannot

get enough tagged data, the training

algorithm would face potential over-fitting

problems. To solve this problem, Bing et al

proposed the LPU algorithm. It uses both

the tagged data and untagged data. First, it

assumes that all untagged data are negative.

Iteratively, the algorithm would train a SVM

to classify the positive and negative

samples until the ratio of positive and

negative samples converges.

The problem is that, since SVM is sensitive

to noises, if in any iteration the trained

SVM is largely affected by noises, later ones

would be worse.

Bing et. al. proposed Biased -SVM in [Bing

Liu, et.al 2003]. Biased-SVM formulation

uses two parameters 𝐶+ and 𝐶−

separately to weight positive errors and

negative errors. Thus the problem changes

to

min
1

2
𝜔𝑇𝜔 + 𝐶+ 𝜉𝑖

𝑖

𝑠. 𝑡. 𝑦𝑖 𝜔
𝑇𝑥𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 , 𝑖 = 1, 2, …𝑛

We can vary 𝐶+ and 𝐶− separately.

Intuitively, we give a large value for 𝐶+

and a small value for 𝐶− because the

untagged set, which is assumed to be

negative, also contains positive data.

We used a separate validation set to verify

the performance of the resulting classifier

with the selected values for C+ and C-.

We used F score as the performance

measure.

Kernel Precision Recall F

Linear 62.36 82.11 70.89

polynom 64.39 79.49 71.15

Gamma 64.07 81.17 71.61

Evaluation

Now that we have presented the five

algorithms we used to determine if a

Review Sentence contains a product feature,

we would like to compare their

performances:

It seems that for this particular task, SVM

with no untagged samples outperforms all

other algorithms by achieving an accuracy

rate of over 80%. When using spy samples,

the performance of SVM decreases largely.

However, since we also used iterative

algorithm in SVM, we can see that the

SVM’s performance is still better than S-EM.

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

Algorithm

Performance Comparison

Combination

To close the loop, we would like to present

some results outside the scope of the

project focus, just for completeness. After

obtaining product features, we would like

to know if customers liked the particular

feature or not. This can be done easily with

an algorithm called PMI.

Point-wise Mutual Information (PMI)

algorithm uses mutual information as a

measure of the strength of semantic

association between two words. The

Point-wise Mutual Information between

two words, W1 and W2, is defined as

follows:

PMI W1, W2 = log(
P(W1, W2)

P W1 ∗ P(W2)
)

Where P(W1,W2) is the probability that W1

and W2 both occur in the same phrase.

Semantic Orientation of a phrase is

calculated as follows:

SO(phrase) = PMI(phrase,"excellent")

− PMI(phrase,"poor")

We can use Semantic Orientation to

Determine the polarity of a particular word.

If the word appear more often with

excellent, it is more likely to have a positive

connotation. The following plot shows

some examples:

Finally, once we have obtained the product

features as well as their relative polarity

from the customer reviews, we can sort

them and present them in a summary form

as demonstrated below:

PRODUCT FILE NAME : D-Link DWL-G120

There are 40 review(s) total.

PROS : setup (5.0)

connection (4.0)

price (4.0)

card (2.0)

connections (2.0)

CONS: performance (-5.0)

port (-2.0)

sensitivity (-2.0)

Conclusion

In this paper, we showed a two-step

method for extracting features from

customer reviews. As the first step, we

would judge whether each sentence has a

feature or not; if it does, we would further

process the sentence and extract the

features. The first step is mainly based on

Machine Learning methods and the second

step is mainly based on Data Mining and

Natural Language Processing Methods. We

have demonstrated in this project that it is

tractable to determine customer opinions

on individual product features. When all

training data are correctly tagged, we

showed that SVM is the best and when not

all training data is tagged, S-EM and B-SVM

almost have the same performance.

-1.5

-1

-0.5

0

0.5

1

1.5

2

b
a
d

te
rr

ib
le

st
u
p
id

g
re

a
t

en
te

rt
a
in

in
g

d
if

fi
cu

lt

g
o
o
d

fu
n
n
y

S
O

Opinions

Opinion Polarity

