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1. Introduction

Legged locomotion is attractive because it can enable a
robot to traverse far more varied terrain than a wheeled
rover is capable of. In the context of planetary exploration,
this is especially attractive as the sites of greatest scientific
interest tend to be characterized by difficult terrain. For
example, it would be extremely difficult for a wheeled rover
to make its way into a lunar crater in search of water.

Planning legged locomotion is, however, a more diffi-
cult problem the wheeled lomotion. Compared to wheeled
robots, legged robots tend to have a much larger number
of degrees of freedom. A planner for a legged robot there-
fore has to plan in a high-dimensional configuration space,
placing considerable demands on the planner’s efficiency.

The problem is further complicated when uneven terrain
is considered. Classical motion planning techniques applied
to legged locomotion generally assume a flat workspace
with obstacles to be avoided. In the case of uneven terrain,
there are no explicit obstacles, but a motion planner must
take care to maintain the stability of the robot at all times
while moving over sloped and uneven surfaces. For artic-
ulated legs, contact with the ground creates a closed-loop
kinematic chain. Algorithms such as probabilistic road-
maps must be adapted to efficiently handle these closed-
loop constraints, as a randomly sampled point in the con-
figuration space has zero probability of exactly satisfying
them.

Especially when the robot is intended for cooperative
tasks with humans, an additional problem is planning tra-
jectories which appear natural to a human observer. A plan-
ner for a humanoid bipedal robot, for example, might gen-
erate bizarre-looking arm motions which aid in balance,
even on relatively flat terrain where such motions are un-
necessary. A planner for legged locomotion should ideally
encode constraints that encourage natural-looking motion.

The specific robot considered in this paper is the ATH-
LETE (All-Terrain Hex-Limbed Extra-Terrestrial Ex-
plorer) robot developed by the Jet Propulsion Laboratory
(JPL). ATHLETE is intended to be a lunar rover, and is
especially designed for movement over broken and uneven
terrain. Its hexagonal frame is designed for carrying large
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payloads, or even a living capsule, so that it could be used
for both transport and exploration by a lunar base. On
flat terrain it can move quickly using wheeled locomotion.
On uneven terrain it can fix its wheels and walk on its
six articulated legs, and it is this mode of operation with
which this paper is concerned. Each leg has six degrees of
freedom. Adding six more DOF for the position and orien-
tation of the chassis, ATHLETE has a total of 42 DOF.

The goal of the present research is to develop a real-
time on-line motion planning algorithm for ATHLETE that
enables it to reach a goal location both quickly and safely.
The approach used here is similar to that of Urmson et.
al., who plan a global path using a traversability map and
then select from a set of actions how to follow that path
locally[3]. In this paper, the set of actions is defined to be
a set of different gaits, and reinforcement learning is used
to learn the action planner.

2. Approach

This paper proposes a three-part planning algorithm for
legged locomotion over uneven terrain that uses a set of
fixed gaits as a model for generating control actions. The
use of fixed gaits drastically reduces the dimensionality of
the configuration space and also results in natural-looking
motion.

The full planning problem is decomposed into a global
planner, an action planner appropriate for any state, and
a set of gait planners:



(i) Field D* search is used to determine an approximate
global trajectory for the robot’s center of mass be-
tween the start and target locations, minimizing a
measure of costs associated with the traversability of
the terrain it crosses.

(ii) An action planner repeatedly selects a gait to use
based on the traversability of the terrain currently
occupied by the robot. Action selection is learned
through reinforcement learning.

(iii) A gait planner determines the joint controls to step
the legs according to the chosen gait in the direction
of the next field D* waypoint.
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For ATHLETE, we choose between two possible gaits, a
“wave gait” and a “tripod gait.” The wave gait moves each
leg in turn keeping five legs on the ground at all times. The
tripod gait moves three non-adjacent legs at a time, leaving
only three legs on the ground at all times. Compared to the
wave gait, the tripod gait trades stability for speed.

3. Traversability analysis

Naturally the robot must be able to avoid obstacles, but
in varied terrain it also essential that it prefer traversing
flat, smooth regions to sloped, rough ones. We therefore
compute a continuous measure of traversability for use by
both the global planner, to maximize the traversability of
the global trajectory, and by the action planner, to select
a gait appropriate to the difficultly of the terrain. We con-
struct a traversability map using a simplified form of the
Morphin algorithm [2].

We discretize the terrain into a grid of cells of fixed size.
Due to ATHLETE’s size, we choose the cell size to be
smaller than the area occupied by the robot to allow for
enough granularity in the global path planned by Field D*.

For each cell, we sample points from the terrain and per-
form a least-squares plane-fitting to those points. The slope
of the plane is used as a measure of the terrain slope, and the
chi-squared error of the sample points from the fitted plane

as a measure of the roughness of the terrain. Scaling these
measures by a priori maximum allowable terrain slopes
and roughnesses for the robot and multiplying them gives
a measure of “goodness.” Morphin multiplies the goodness
by a measure of uncertainty to determine traversability;
since we assume full knowledge of the terrain geometry, we
simply equate traversability with goodness.
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4. Field D* Path Planning

For each terrain cell, we then calculate a weighted
traversability average of surrounding cells (up to approx-
imately the area of the robot) as a measure of the cost
of moving the robot directly through that cell. Field D*
search [1] is then used to plan a route through the terrain.
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5. Action Planner

Although we assume perfect knowledge of the environ-
ment and the robot state, the results of robot actions are
nondeterministic. Due to deficiencies of our physics model,
uncertainty in the controller, and unpredictable interac-
tions with the environment, the state resulting from execu-
tion of a control action may differ from what was expected.
This makes an open-loop planner unsuitable. Instead, we
use reinforcement learning to develop a planner which maps
states to control actions.
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5.1. Reinforcement learning

The state of the robot includes its position and orien-
tation, which gait the robot is currently employing, and
the slopes and roughnesses of the terrain immediately sur-
rounding the robot. For the purposes of action selection
and learning, we reduce the state to a single feature, the
minimum traversability of the terrain grid cells currently
underlying the robot.

We take an action to be a single iteration of the chosen
gait, in which all six legs take exactly one step. For exam-
ple, a full iteration of the tripod gait involves two steps,
each moving three legs in the same direction simultane-
ously. There is also a special action to select a different gait.

The reward function for an action incorporates the dis-
tance travelled, the stability of the robot during the action,
and any “mishaps” that occurred. Stability can be mea-
sured by the area of the polygonal support region formed by
the non-moving legs. Mishaps include exceeding the torque
limits and self-collisions induced by over-extending one or
more legs.

The planner is learned with value iteration. State transi-
tions are learned by executing many actions in varied ter-
rain in a physics simulation.

6. Gait Planner

The selected gait planner accepts a heading and gener-
ates the low-level control actions given to the motor con-
trollers or physics simulation. The results of these control
actions are used to learn the action planner.

The wave gait planner used moves each leg in turn, going
counterclockwise around the frame of the rover. Each leg
is moved in a parabolic arc in the desired direction until it
comes in contact with the ground.

The tripod gait planner used alternates between move-
ments of three non-adjacent legs. During each movement,
it attempts to shift the frame of the body a fixed distance
along the plane of the body (to accommodate sloping ter-
rain). Inverse kinematics are used to determine where to
place the moving legs so that they end in contact with the
ground.

7. Results

Fig. 5 shows the results of the planning framework in
simulation on a plot of uneven terrain. Field D* plans a
global path skirting the hill to the northwest. Starting on
relatively flat terrain, the action planner initially selects the
tripod gait. It has learned to prefer this gait on relatively
easy terrain, where additional stability is less essential, for
its speed advantage over the wave gait. On reaching the
bumpier area in the southeast, the action planner switches
to the slower but surer wave gait. Upon reaching flatter
ground close to the goal, it reverts back to the tripod gait.

8. Summary

This paper presents a framework for motion planning of
legged robots over uneven terrain. Reinforcement learning
is used to learn a planner which selects from a set of pre-
defined gaits according to the difficulty of the terrain.

In future work, more choice in actions could be allowed.
In particular, the action planner could be allowed to exer-
cise some control over the heading of the robot. More state
features would also be useful, to allow the action planner
greater knowledge of the terrain and perhaps take into ac-
count the current pitch and roll of the robot.

The use of predefined gaits necessarily limits the diffi-
culty of the terrain that can be safely traversed using this
planning framework. It could be useful to incorporate a
full footfall planner as an additional action to be chosen on
particularly difficult terrain.

The framework could also be extended to uncertain envi-
ronments without considerable difficulty. The full Morphin
algorithm supports updating traversability measures when
new data is acquired. Instead of using arbitrarily sampled
points from a known terrain mesh, points derived from sen-
sor data could be used. Field D* likewise supports efficient
replanning when costs of grid cells are updated. It has been
shown to be at least two orders of magnitude faster than
repeated application of A* in this respect.

algorithm (described in ”Motion planning for a six-legged
lunar robot”, Hauser, Bretl, Latombe and Wilcox).
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(a) Tripod gait (b) Wave gait (c) Tripod gait

Fig. 5. ATHLETE selects gait based on difficulty of terrain
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