
CS229 Final Project

Title: Fault-Tolerant Architecture for Machine Learning
Applications

Larkhoon Leem (SUID: 5149427)

1. Introduction
Scaling of semiconductor transistors in integrated
circuits has been major thrust for speed and density
improvement of modern microprocessors. At the
same time, ever decreasing semiconductor size
makes it more difficult and expensive to make
microprocessors strictly reliable.
If we look around it is not so hard to find systems
that allow errors. Those systems take advantage of
error-detection and error-correction mechanism to
live up with errors. An example of systems is
telecommunication. Noise is inevitable in data
transmission. Efficient encoding and decoding
schemes have been invented to fight with noise
errors. Encoding and decoding schemes use
iterative and probabilistic algorithms. Iterative
characteristics provide good error-detection and
error-correction points. Probabilistic nature of
output result allows relaxed requirement for
accuracy of computation.
Machine learning applications shares many
similarities with telecommunication
decoding/encoding. Estimation application and
categorization algorithms are iterative and
probabilistic. If we can take advantage of these characteristics of machine learning we
can build an error-resilient computer architecture which is cost-effective in terms of
testing and power consumption.
In this project report I would like to propose new way of computing for fault-tolerant
machine learning application. Background information will be given in section 2. Section
3 will explain experiments which have been conducted in this project. In section 4,
architectural design proposal based on experiments will be given.

Figure 1 Machine learning &
probabilistic applications

2. Fault-tolerant microprocessor design – IBM G5
Reliability has been important issue in microprocessor design and it has been integrated
into chip design. In this section, extra design that was put into commercial
microprocessor such as IBM PowerPC G5 will be given. It will give us some sense on
how much extra circuit and computing power has to be spent at this node device
fabrication technology.
The IBM G5 processor makes extensive use of fault-tolerance techniques to recover from
transient faults that constitute the majority of hardware faults. Fault tolerance is provided
for the processor, memory and I/O systems. Traditional redundancy methods are used to
implement fault tolerance in the I/O subsystem. There are multiple paths from the
processor to the I/O devices. They can be dynamically switched in case of errors. Error
checking is provided at interface to prevent errors from propagating into the system.
G5 pipeline includes I-unit and E-unit. I-unit is responsible for instruction fetch, decode
and generating necessary addresses, etc. E-unit “executes” instruction and updates
machine state. Both I-unit and E-unit are duplicated respectively. Each compare the
results with duplicated results. A divergence between two instances indicates an error.
Register unit, R-unit, stores checkpointed machine state to facilitate rollback recovery.
Also, registers are protected by an error-correcting code and R-unit is updated whenever
E-units generate identical results.
All writes to the L1 cache are also written through to the L2 cache, which can works as
backup copy of the L1 contents. L2 cache, the main memory and buses connecting
processor with L2 cache are protected with error-correcting code(ECC).
Special logic detects the same failures happening repeatedly in the same storage. Such
repeated failures are taken to indicate a permanent fault and affected cache line is
permanently retired.
Extra circuit and techniques mentioned here is just samples of the extra features in G5. If
we can get rid of circuit space and power consumed in fault-tolerant circuits as these,
microprocessor design can be more power-efficient.

3. Experiment Setup

Figure 2 Experiment setup

Experiments were conducted to see how machine learning application are behaving in
errors. K-means clustering was chosen as target application. K-means clustering is simple
but robust categorization algorithm which was covered in this class.
Experiment setup consists of two parts. One is error injection handler and the other is
memory access monitor. Error injection handler injects error to machine state. It
simulates errors in arithmetic unit and memory. As shown in fig 2, timer interrupt calls
error injection code. Error injection code randomly chose a register to inject error. Bit
location(bit 0~31) of this register is chosen and this bit is flipped.
Second part of experiment setup is memory access monitor. Kernel code is modified to
generate DTLB miss at every DTLB access. By this way, we can monitor what memory
address is used for all the memory access during program execution.

Experiment was conducted on Xilinx VirtexII
Pro XUP board. VirtexII Pro FPGA chip has
embedded PowerPC 405 embedded processors.
Although no change can be made to FPGA
hardware, there were several advantages that
served the purpose of this project better than
software simulation. First, there is no OS process
running on FPGA embedded processor. Only
minimum exception handler code is all the
process that runs on the processor other than user
application. Having OS process on the same chip
is disadvantageous as error can be injected to OS
process and cause system crash. Error resiliency
of OS was out of scope of this project and I
decided to focus on error resiliency of machine
learning application only.

4. Proposed microprocessor architecture and project
goal
As proposed system has relaxed reliability criterion, error rate will be much higher than
conventional processors. At processor crash(or loss) and unacceptable accuracy due to
errors, we should rollback and restart. Convergence check code at the end point of each
iterations of machine learning application will serve as error-detection point. If error is
detected, iteration result is dropped and machine state will rolled back to previous
iteration.
Because of roll-back and restart, the number of iteration will increase compared to
conventional processor. Fig 4 shows imaginary test result of proposed system. Multiple
tests have been conducted sequentially. Proposed system shows varying number of
iteration counts at each tests when reference(conventional system) show constant number
of iteration. This is because of unpredictability of program errors. Thus goal of this
project has to minimize the additional iteration counts due to roll-back. If this overhead is
higher than power saving from relaxing reliability criterion, this project would be
meaningless.

Figure 3 Xilinx XUP board

Figure 4 Reference vs. Proposed system iteration count

5. Experiments

5.1 Array element access
In order to see how memory addresses are corrupted, simple memory access for-loop is
tested.

Figure 5 Memory address trace with error inejction

Memory address is supposed to increase as read line.(Note that it seems like constant
because axis is in log-scale.) Actual address trace show random jumps at multiple points.
Memory address of array element is sum of base address and index value. If error is
injected to a base register, subsequent memory address becomes garbage. All the memory
access should be monitored and if it digresses from start and end address of array, it
should be considered as error. There could be ways to correct this error but to make

proposed architecture simple, I chose to roll-back and restart whenever memory bound
checking fails.

5.2 Error injection to general purpose registers

Figure 6 Error injection to GPR

Errors were injected to each general purpose registers. Some registers could not survive
one error. They were r1(stack pointer), r3(return address), etc. These registers are all
related to function calls. If sp is corrupted, location where return address was stored can
not be correctly retrieved. Thus, if stack pointer gets corrupted, program will jump to
wrong place and application will fail sooner or later.
Two measures can be taken to enhance stack pointer reliability. Function calls needs to
be inlined so that there will be very few function calls. Secondly program counter value
should be monitored. If pc value goes outside where text segment sits, error should be
declared and program should restart.

5.3 Error injection to special purpose registers

Errors were injected to special purpose registers as well. Similar to what we saw in
GPRs, there were special purpose registers which could not survive single errors. They
were LR(branch target, return address), CTR(branch target, loop counter).

 R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R31

Figure 7 Error injection to SPR

5.4 Convergence test
Each iteration in machine learning application performs convergence test at its end. If we
can find monotonically increasing/decreasing feature, it could tells whether output of that
iteration was acceptable or not.
In K-means clustering, total sum of distance between each data and its centroid should
monotonically decrease.(fig 8) It will serve as a valuable information to examine the
accuracy of that iteration. If total sum shows oscillation or non-monotonic variation as in
fig 9, result of iteration should be dropped.

Figure 8 Convergence test without error

LR CTR XER CCR0 PID DAC1 DEAR CR0

Figure 9 Convergence test with error

5.5 Overall performance
Iteration counts were measured at different error rates. With current design, overhead is
less than 100%. In order to achieve good performance, overhead should be reduced down
to less than 20%.
At certain error rate, iteration count rose very quickly and proposed architecture could not
be used for computation.

Figure 10 Overall performance result

6. Conclusion

From this project, we were able to confirm error resiliency in machine learning
applications such as K-means clustering. We could deduce what are the requirements for
proposed relaxed reliability microprocessor architecture. They are i) error resiliency in
application algorithm, ii) memory bound checking of data/code, iii) low overhead
restart/roll-back, iv) convergence checking for error detection.

Error rate

Iter.
Count(with
error)
Iter.
Count(without
error)

