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I. I NTRODUCTION

In wireless networks, every node needs to keep its neigh-
bors’ link connectivity originated from periodic beacon mes-
sages in order to maintain the best route and forward packets
along the path. Especially, wireless sensor networks should be
working under low power constraint, so retransmission should
be restricted in WSN as far as it can [2]. Moreover, low power
wireless link makes the connectivity too volatile since low
power wireless radio is vulnerable due to temporal interference
from higher power radio, e.g., 802.11, Bluetooth, and etc. [3],
[4]. Additionally, mobility makes the link connectivity more
unstable [5]. These intrinsic wireless link behaviors make the
link estimation for best routes far more difficult. Thus, it
would be of great significance to estimate the best neighbor by
efficiently exploiting the previous link status, i.e., history of
beacon time and power so as to forward packets successfully.

In our project, we exploit thelocally weighted linear regres-
sionmethod to estimate signal power when a node assumes to
receive a packet from neighbors at an arbitrary time and rank
the proximity of neighbors according to the estimated power.
More specifically, the node which has the highest power would
be the closest neighbor.

We use NS-2 network simulator to model the mobility of
nodes and obtain training data from their own learning tables.
We compare the estimation method with naive deterministic
schemes such that a node, which has the largest received power
in the last beacon time, is selected as the 1st rank. We expect
our learning algorithm will reduce the error rate to estimate the
best candidate for forwarding compared to the naive methods.

II. SYSTEM MODEL

The network model we consider consists ofN nodes
randomly distributed over two-dimensional region. Each node
is assumed to move with its own will under the random
waypoint (RWP) model. The actual location of each node,x(i)

wherei = 1, . . . , n, depends on the speed which is randomly
distributed over [0,max-speed] and a certain pause time in the
RWP model. In order to design the system on this assumption,
we consider two typical models used well in a wireless sensor
network: two-ray ground propagation model and shadowing
propagation model.

A. Two-Ray Ground Propagation Model

The transmitted signal from a sender is delivered to a
receiver through multi-ray paths, depending on how many it is

reflected, diffracted or scattered on the designated ray-paths.
It is assumed that the single ground reflection is dominated
among other multi-path components in the two-ray model,
which is illustrated in Figure 1.

Fig. 1. Two-ray Ground ropagation Model

Then, the received power,Pr, is calculated via the geometric
view as follows.
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Pt is a transmitted power,Gl = GaGb is the product of the
transmit and receive antenna gains in the LOS direction,Gr =
GcGd is the product of the transmit and receive antenna gains
corresponding to the reflective direction, andR is the ground
reflection coefficient.4φ = 2π(x + x′ − l)/λ is the phase
difference between a LOS path and the reflected path.

From the geometry, the distance difference and the phase
difference is given by
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where it is assumed thatd is asymptotically large enough
compared toht + hr. If this assumption makes sense in the
network model, then the parameters can be supposed like
x + x′ ≈ l ≈ d, θ ≈ 0, Gl ≈ Gr, andR ≈ −1. Therefore, the
Eq. (1) is approximated into

Pr ≈ Pt
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B. Shadowing Propagation Model

The two-ray model is assumed that there is no blockage on
the ray-paths and only the ray distance difference is thought
of as an important factor for a received power. However, a
signal transmitted from a sender can pass through blockage,
which gives rise to random variations of the receiver power
at a receiver. The shadowing model is considered under the
statistical random fluctuation. Typically, the log-normal distri-
bution is used in a shadowing model which is superimposed
with the path loss in a wireless sensor network. The receiver
power is attenuated according to a distance between two nodes
and randomly fluctuated for shadowing. Therefore, the receiver
power is given by

Pr

Pt
dB = 10 log10 K − 10γ log10

d

d0
− ψdB (6)

whereψdB is a Gauss-distributed random variable with mean
zero and varianceσ2

dB . K is the path-loss coefficient andγ is
the path-loss exponent.

The routing table on each node is built up based on
the learning table of the received power, which is used for
delivering the messages at any time. However, the information
used to establish a learning table is obtained only at the regular
beacon time. Therefore, in order to decide the nearest neighbor
at any time, i.e. even at irregular beacon time, we need a new
algorithm to decide who the nearest neighbor is.

III. A LGORITHMS

A. Naive Methods

Each mobile node receives beacon packets from its neighbor
mobile nodes, which include the beacon time, node ID, and
the received power. Naive methods we use deterministically
choose the nearest one at a given time based on the previous
link status for neighbor nodes. These methods do not execute
any further statistical processing.

The first naive method is to use the last received beacon time
only as a main criterion to determine the proximity between a
node and neighbors. For example, in this method, the neighbor
from which a node received a beacon packet the most recently,
would be the closest neighbor to the node.

However, this method do not provide a correct answer
when a node received beacon packets from multiple neighbors,
simultaneously. In this case, the received power of each beacon
can be a useful indicator to determine the proximity between a
node and neighbor nodes. The second naive method considers
the last received power as well as the last received beacon
time as criteria to determine the locality.

Both naive methods, however, have some weak points. As
time goes by, the network also changes due to mobility of
nodes. The previous information might be outdated to be used.
For instance, even if a node received a beacon packet from a
neighbor the most recently with the highest received power,
another neighbor node could approach to the node rapidly
in the mean time and be the closest node at the current
time. Therefore, it would be required to estimate the received

power at a given time by exploiting some statistical prediction
methods so that each node can estimate the nearest neighbor
with higher accuracy.

B. Locally Weighted Linear Regression

The learning algorithm we exploit is a locally weighted
linear regression. In the first step, we try to approximate y,
the received power, as a linear function of x, the beacon time
with a regression variable,θ. Then, we defineh(x) is the
approximated value of y given x.

h(x) = θ0 + θ1x (7)

The criteria how the approximation is close to y is deter-
mined by the cost function,J(θ), where the errors are squared
and summed.

J(θ) =
1
2

m∑

i=1

(hθ(x(i))− y(i))2 (8)

However, the normal linear regression gives equal weight
for all the training data for approximation. However, de-
pending on the distance from each training data, varying the
weighting factor gives the better performance for estimation.
In a weighted linear regression, the cost function is changed
into

J(θ) =
1
2

m∑

i=1

w(i)(hθ(x(i))− y(i))2 (9)

where the weighting factorw(i) is given by

w(i) = exp
(
− (x(i) − x)2

2τ2

)
(10)

The weighting effect depends on the bandwidthτ , which
will be given a proper value in our project. When the cost
function approaches to the minimal point, the regression
variable,θ, is optimized for estimating non-training data. In
order to obtain the minimum of the cost function, we take a
derivation ofJ(θ) (or the gradient for the case of vector) and
obtain aθ which leads toJ(θ) = 0. As a result, we find that
regression variableθ is

θ = (XT WX)−1XT Wy (11)

whereW is a matrix whose diagonal terms arew(i).
With the locally weighted linear regression algorithm, each

node can estimate the received power from neighbor nodes
at a current time. Therefore, each node can be aware of who
is the nearest node at a given time based on this regression
method.



IV. EVALUATION

To evaluate the performance of estimator, we generated test
data from NS-2, which is one of the most widely used network
simulators in wireless networks. The topology we used is
120m x 120m grid and 20 mobile nodes are moving around
the grid according to random waypoint mobility model. The
maximum speed and pause time we set is 5m/s and 3 seconds,
respectively. Each node communicates with each other via
802.15.4 wireless PHY/MAC layer and communication range
is set to 30m. We evaluated estimators under two different
propagation models, i.e., two-ray ground model and shadowing
model.

Each node transmits a beacon message with every 5 sec-
onds. The total simulation time is 1000 seconds. For the
first 400 seconds, each node updates its learning table which
cumulates neighbor ID, received beacon time, and received
beacon power over time. During the remaining 600 seconds,
each node estimates the best neighbor once per every 20
seconds. The specific time is randomly chosen from uniform
random variable over [0, 20] seconds. This test procedure
provides 30 different data sets per node, thereby leading to
600 data sets from total 20 nodes. Using NS-2 simulator,
we obtain the real nearest neighbor for each data set at the
every execution time to estimate. Estimator tries to predict
the nearest neighborhood list which is sorted by proximity.
We calculated the probability that the real nearest node at
each evaluation time successfully matches to one of the best
k neighbors of each estimation wherek = 1, 2, and 3. We
compared our proposed estimation method with the naive
methods specified in Section III-A.
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Fig. 2. Probability to find the best neighbor for locally weighted linear
regression and naive methods in two-ray ground propagation model

Figure 2 shows that both our proposed scheme and the
estimation scheme based on last received beacon time and
power work pretty durably in two-ray ground model. Both
two methods outperform the estimation scheme based only on
beacon time. The proposed scheme successfully predicts the
exact best neighbor with 74% and one of our best 3 neighbors
from estimation successfully matches to the real best neighbor
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Fig. 3. Probability to find the best neighbor for locally weighted linear
regression according to varyingτ in two-ray ground propagation model
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Fig. 4. Probability to find the best neighbor for locally weighted linear
regression and naive methods in shadowing propagation model

with 94%. This means that if a mobile node sends a packet
to the best three next-hop nodes by multicast, the packet will
be successfully delivered to the best neighbor with very high
probability.

Figure 3 shows that whenτ is 0.2 or 0.3, the maximum
prediction is achieved to find the best neighbor with locally
weighted linear regression method. Beyond the value, the
performance is all about the same or rather slightly decreased.

Figure 4 shows that the proposed scheme outperforms two
naive methods with a factor of 1.4 in maximum in shadowing
model. The proposed scheme successfully predicts the exact
best neighbor with 47% and one of our best 3 neighbors from
estimation successfully matches to the real best neighbor with
80%. The fidelity in shadowing model is less than in two-
ray ground model since random behavior in shadowing model
makes the prediction reliability a bit lower.

Figure 5 shows thatτ= 0.6 or 0.7 achieves the maximum
prediction level to find the best neighbor in locally weighted
linear regression. The point we need to address is that the
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Fig. 5. Probability to find the best neighbor for locally weighted linear
regression according to varyingτ in shadowing propagation model

larger τ leads to the maximum estimation results in shadow-
ing model compared to two-ray ground model because less
penalization for the added random error is desirable.

V. CONCLUSION

Our proposed locally weighted linear regression method
works durably for estimation of the best neighbor in mobile
sensor networks even though random nature in shadowing
model makes prediction fidelity lower than the deterministic
two-ray ground model. The preliminary findings have strong
implications to the design of ad-hoc routing protocols in
mobile WSN. Routing protocols can choose the best three
next-hop nodes and forward packets to them so as to improve
reliable packet delivery in mobile networks. We leave the
following questions as future works.

• How does the proposed estimator based on locally
weighted linear regression work in NS-2 simulator: ex-
ecution time (especially for pseudo-inverse operation),
memory overhead, etc.?

• How can normal/adaptive Kalman filter be applied to the
estimation of the nearest neighbor?

• Whether can other kinds of supervised machine learning
algorithms be applied?
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