
Automatic Detection of Character Encoding and Language

Seungbeom Kim, Jongsoo Park
{sbkim,jongsoo}@stanford.edu

CS 229, Machine Learning
Autumn 2007

Stanford University

1 Introduction

The Internet is full of textual contents in various lan-
guages and character encodings, and their communica-
tion across the linguistic borders is ever increasing. Since
the different encodings are not compatible with one an-
other, communication protocols such as HTTP, HTML,
and MIME are equipped with mechanisms to tag the char-
acter encoding (a.k.a. charset) used in the delivered con-
tent. However, as native speakers of a language whose
character set does not fit in US-ASCII, we have encoun-
tered a lot of web pages and e-mail messages that are
encoded in or labeled with a wrong character encoding,
which is often annoying or frustrating. Many authors,
especially of e-mail messages, are not aware of the en-
coding issues, and their carelessness in choosing correct
encodings can result in messages that are illegible to the
recipient. Therefore, automatically detecting the correct
character encoding from the given text can serve many
people using various character encodings, including their
native one, and has a good practical value.

The importance of automatic charset detection is not
restricted to web browsers or e-mail clients; detecting
the charset is the first step of text processing. There-
fore, many text processing applications should have au-
tomatic charset detection as their crucial component; web
crawlers are a good example.

Due to its importance, automatic charset detection is al-
ready implemented in major Internet applications such as
Mozilla or Internet Explorer. They are very accurate and
fast, but the implementation applies many domain spe-
cific knowledges in case-by-case basis. As opposed to

their methods, we aimed at a simple algorithm which can
be uniformly applied to every charset, and the algorithm
is based on well-established, standard machine learning
techniques. We also studied the relationship between lan-
guage and charset detection, and compared byte-based al-
gorithms and character-based algorithms. We used Naı̈ve
Bayes (NB) and Support Vector Machine (SVM).

Using the documents downloaded from Wikipedia [6],
we evaluated different combinations of algorithms and
compared them with the universal charset detector in
Mozilla. We found two promising algorithms. The first
one is a simple SVM whose feature is the frequency of
byte values. The algorithm is uniform and very easy to
implement. It also only needs maximum 256 table entries
per each charset and the detection time is much shorter
than other algorithms. Despite of its simplicity, it achieves
98.22% accuracy, which is comparable to that of Mozilla
(99.46%). The second one is a character-based NB whose
accuracy is 99.39%. It needs a larger table size and a
longer detection time than the first algorithm, but it also
detects the language of document as a byproduct.

2 Previous Work - Mozilla

Kikui [2] proposed a simple statistical detection algo-
rithm. He used different algorithms for multi-byte and
single-byte charsets: a character unigram for multi-byte
charsets and a word unigram for single-byte charsets.
(N -gram is the sequence of linguistic units with length
N . A word unigram means that the unit of statistics is
one word.) Using different algorithms for multi-byte and

1



single-byte charsets is a fairly common approach shared
by almost all previous works. This is because multi-
grams are too long for multi-byte charsets and unigrams
are too short to gather meaningful statistics of single-byte
charsets. Kikui’s algorithm is essentially NB except that
it has a pre-step which distinguishes between multi-byte
charsets and single-byte charsets.

Russell and Lapalme [5] advocated the simultaneous
detection of charset and language. Their probability
model is also NB, but they interpolated trigram and un-
igram models.

There are not many academic papers about automatic
charset detection, and they are neither theoretically sound
nor supported by a thorough empirical evaluation. At
the same time, open source implementations such as
Mozilla [4] and ICU [1] work extremely well in practice.
Since their approaches are similar, we focus on the uni-
versal charset detector in Mozilla.

The universal charset detector in Mozilla [4] uses three
different methods in a complementary manner (Figure 1).
It first classifies the document by finding a special byte se-
quence. For example, every UTF series character stream
can start with a special byte sequence byte-order mark
(BOM). If the input byte sequence has an escape char-
acter ‘\033’ (ESC) or ‘˜{’, we know that the input is
encoded by one of the escape charsets (GB2321, HZ Sim-
plified Chinese, ISO-2022-CN/JP/KR). If the input satis-
fies this escape character condition, the detector executes
a state machine for each possible charset and pick the one
which arrives at the “itsMe” state first. If the input neither
satisfies the conditions above and nor has any byte bigger
than 0x7f, we know that the input is US-ASCII.

The second and third methods use a known statistical
distribution of each charset. Similar to Kikui [2], the uni-
versal charset detector in Mozilla uses different methods
for multi-byte charsets and single-byte charsets: one char-
acter as the unit for multi-byte charsets and two bytes as
the unit for single-byte charsets. However, to fully uti-
lize the encoding rules for each charsets, it also runs a
state machine. The state machine identifies the charset
which is surely correct or which is surely incorrect, ac-
cording to the encoding rules. For single-byte charsets
whose language does not use Latin characters, it excludes
Latin characters from the statistics to reduce the noise.

In summary, Mozilla’s implementation smartly exploits
various aspects of character encoding rules which are ac-

Figure 1: The flow chart of the universal character encod-
ing detector in Mozilla. BOM means Byte-order mark.

cumulated from years of experience. However, the imple-
mentation is not easy to understand by novices.

3 Design

3.1 Scope
For the purpose of this project, we want to confine the
set of target languages and charsets. To be representative
among single-byte and multi-byte encodings, we select a
few from both classes as follows:

• single-byte:

– US-ASCII [en]

– ISO-8859-1 [en,fr]

• multi-byte:

– Shift-JIS, EUC-JP [ja]

– EUC-KR [ko]

2



Figure 2: Byte-based method vs. character-based method

– ISO-2022-{JP,KR} [ja,ko]

– UTF-8 [universal]

This yields 12 pairs of (language, charset).
It is a trivial task to add more charsets and languages

as needed in the future. In particular, our algorithm does
not depend on any previous knowledge of any particular
language or charset, except the fact that US-ASCII is the
common subset of the other charsets, notably ISO-8859-1
and UTF-8.

3.2 Feature
We define our feature as a sequence of “units.” Then the
two axes of the feature are formed by the definition of the
“unit” and the length of the sequence.

We have two different approaches regarding the defini-
tion of the “unit”: one is byte-based, which means treat-
ing the raw bytes from the document as the units, and the
other character-based, which assumes each charset and
decodes the byte sequence into a sequence of characters
(represented by the code points of the Universal Charac-
ter Set) to be considered as the units. (When the byte
sequence cannot be decoded under the assumption of a
charset, that charset is dropped from the set of candidates.
See Figure 2) The latter is inspired by our intuition that
it will give a better representation of the character distri-
bution in each language than the former, in which byte
sequences spanning the boundary between adjacent char-
acters will perturb the distribution. The character-based
algorithm only needs to keep one parameter set for each
language, while the byte-based algorithm needs one for
each (language, charset) pair.

The other axis is the sequence length, represented by N
(in N -grams). A simple model can use individual bytes

or characters (unigrams) as the features; more elaborate
models can use two or three consecutive bytes or charac-
ters (bigrams, trigrams), or even more. The size of the
parameter space is exponential to N , so there is a tradeoff
between the accuracy of the model and the cost of train-
ing, computation and storage. This becomes more impor-
tant as the size of the set of units becomes large, as in
Asian charsets with character-based approach.

3.3 Algorithm
Our first choice was Naı̈ve Bayes (NB) under the multi-
nomial event model, which is similar to the spam filtering
example discussed in class. This algorithm is simple to
implement and expected to work reasonably well.

Later, Support Vector Machine (SVM) was also tried.
Our own implementation of the SMO algorithm was used
first, but a library implementation (called libsvm [3])
outperformed our version. The lengths of the documents
were normalized to 1, thus, for example, the value at the
feature vector index 0x68 represents the number of ap-
pearances of 0x68 divided by the total number of bytes of
the document. Since the feature space is already large, we
used the linear kernel. We used “one-vs-the-rest” multi-
class strategy: the class with the highest decision values
was selected. We also tuned the regularization constant C
and the tolerance value.

Based on the result from these two algorithms, we de-
vised a hybrid algorithm, which first uses the character-
based NB to detect only the charset and then uses the
character-based SVM to further increase the accuracy of
the language detection.

4 Result
1000 documents per (language, charset) pair have been
downloaded from Wikipedia [6]. (Since Wikipedia is in
UTF-8, the documents for other charsets can be converted
from UTF-8 by using iconv.) They are used for training
and testing, using a cross-validation method that uses 70%
of the data for training and the rest 30% for testing.

Figure 3 shows the result for the best cases for each
detection goal and algorithm. For detecting the charset
only, the Mozilla implementation gives the best accu-
racy of 99.46%, but our SVM method with byte unigrams

3



achieves a similar accuracy of 98.22% with a much less
table size of 4.1 KB and a much less detection time of
0.08 ms per document.

For detecting the charset and the language at the same
time, our hybrid method combining unigram NB and un-
igram SVM gives the best pair accuracy of 98.69% with
the table size of 1.6 MB and the detection time of 2.23 ms
per document.

Figure 4 shows the histogram of the correct charsets vs.
the detected charsets when we use the byte-based SVM to
detect the charsets only. Note that the majority of the er-
rors are from detecting UTF-8 or ISO-8859-1 documents
as US-ASCII. Since US-ASCII is the subset of all the
other character sets and many documents with (English,
UTF-8) and (English, ISO-8859-1) mainly use US-ASCII
except for very few characters, it is hard to distinguish be-
tween them merely by using statistical information. This
is the place where the domain-specific knowledge plays
an important role and the universal charset detector in
Mozilla uses them very well.

The character-based approach does a better job of dis-
tinguishing between US-ASCII English documents and
non-US-ASCII English documents. If the document is
US-ASCII, then UTF-8, ISO-8859-1, and US-ASCII de-
coders should produce the same character sequence, and
thus give the same likelihoods. By giving the precedence
on the subset charset (US-ASCII in our case), we can cor-
rectly detect a US-ASCII document. (Note, however, that
detecting a US-ASCII document as ISO-8859-1 or UTF-
8 is not harmful at all and thus can be considered as a
non-error.) If the document is almost US-ASCII but has
exceptional few characters, then the US-ASCII decoder
fails, thus it is detected as another charset.

We expected that the character-based SVM would work
very well, because both of the character-based NB and the
byte-based SVM gave a better result than the byte-based
NB. However, the accuracy dropped from that of the byte-
based SVM. This may share the common reason with the
fact that the SVM with byte bigrams has a lower accuracy
than the SVM with byte unigrams. Finding the reason of
the decreased accuracy of the SVM algorithm in a larger
feature space could be an interesting future work.

5 Conclusion
We have seen that:

1. the character-based approach with the Naı̈ve Bayes
algorithm works well for detection between charsets
sharing a large code space (e.g. English US-ASCII,
UTF-8, and ISO-8859-1 documents),

2. the byte-based approach with the Support Vector
Machine works well with a smaller memory usage
and at a faster speed, and

3. the hybrid method of character-based NB for charset
detection and character-based SVM for language de-
tection gives the best results.

References
[1] International components for unicode. http://www.icu-

project.org.
[2] G. Kikui. Identifying the coding system and language of on-

line documents on the internet. In International Conference
on Computational Linguistics, 1996.

[3] A library for support vector machines.
http://www.csie.ntu.edu.tw/ cjlin/libsvm/.

[4] A composite approach to language/encoding detection.
http://www.mozilla.org/projects/intl/UniversalCharset
Detection.html, 2002.

[5] G. Russell and G. Lapalme. Automatic identification of lan-
guage and encoding. 2003.

[6] Wikipedia. http://www.wikipedia.org/.

4



algorithm optimal pair charset table detection time
meta-parameters accuracy accuracy size (per document)

charset only
NB byte 2gram 92.35% 30 KB 3.04 ms
SVM byte 1gram, tol=1e-5, C=1e25 98.22% 4.1 KB 0.08 ms

Mozilla 99.46% 14 KB 1.67 ms

charset & lang.

NB byte 3gram 81.78% 82.31% 3.4 MB 25.80 ms
char 3gram 98.01% 99.33% 2.4 MB 8.33 ms

SVM byte 1gram, tol=1e-5, C=1e9 90.74% 90.94% 6.1 KB 0.53 ms
char 1gram, tol=1e-4, C=1e25 89.60% 90.19% 1.6 MB 2.02 ms

hybrid 1gram NB + 1gram SVM 98.69% 99.33% 1.6 MB 2.23 ms

Figure 3: Accuracy, required table size and detection time of each algorithm. Pair accuracy is counted only if the
both of charset and language are correct. The best meta-parameters such as N , C and tolerance are chosen for each
algorithm.

utf-8 us-ascii iso-8859-1 shift-jis euc-jp iso-2022-jp euc-kr iso-2022-kr

correct charset

utf-8 293 5 1 0 0 0 0 0
us-ascii 1 298 1 0 0 0 0 0
iso-8859-1 0 20 176 0 0 0 0 0
shift-jis 0 0 0 300 0 0 0 0
euc-jp 0 0 0 0 300 0 0 0
iso-2022-jp 0 1 1 0 0 298 0 0
euc-kr 1 0 0 0 1 0 298 0
iso-2022-kr 0 0 0 0 0 0 0 300

Figure 4: The histogram of correct charsets vs. detected charsets from byte-based SVM (charset detection only)

5


