Computationally Efficient Evolutionary Algorithms:
Enhanced by On-line Machine Learning

Jong-Han Kim and Taehoon Kim

Abstract— An efficient evolutionary optimization algorithm information only for the fithess evaluation and dispose of
of which the convergence is improved is proposed. A “ma- them without storing.
chine” which learns the parameter-cost relations on-line is We claim that this wastefulness can be improved by using

implemented inside the evolutionary algorithm, and the ma- hine | ina techni A hine” which | th
chine reuses the parameter-cost information as training sets to Machine learning technigues. A ‘machine” which learns the

update the hypothesis functions. As the populations converge Parameter-cost relations is implemented inside the atyuori
and regression accuracy improves, some portion of the cost As the algorithm evaluates the cost function repetitiviig,
evaluations are substituted with machine-learned regressions, machine reuses those information as training sets to update
and they are put into the selection process. This significantly .o pynothesis functions. Since the region in which the cost
reduces the computational load and running time, because the . luated tract d th ti th fi
training/computation of the machine is much cheaper than IS eva ua-e contracts aroun gop Imum as the generation
the actual cost function evaluations. Also, this implies that number increases, the regression performance around the
the effective number of offsprings can be easily increased, optimum gradually improves as they evolve; i.e., the maehin
which leads to improved convergence with little increase of the learns the |arge_sca|e macroscopic views of the cost fomsti
computational load. The improved convergence is shown by a j, e early stages of the evolution, and the scale reduces as
simple numerical examples and a practical design problem. . o

the population evolves, eventually achieving a very adeura
approximation around the optimum in the local microscopic

views. As the regression accuracy improves, some portion

Evolution-based optimization methods have a number 6¥ the cost evaluations are substituted with machine-trn
advantages over traditional hill-climbing (e.g., gradienregressions, and will be put into the selection processs Thi
descent, Newton’s method) techniques. Unlike the gradiergtignificantly reduces the computational load and running
based methods, evolutionary algorithms can easily escafj@e, because the training/computation of the machine is
from local minima, eventually converging toward the globamUCh cheaper than the actual cost function evaluations. The
minimum. Also, the evolutionary algorithms can be appliedroposed algorithm is first shown using a simple numerical
to any type of cost functions, since they do not require thexample, then applied to a practical autopilot design opti-
gradient or any higher order information. For cost funcsionmMization problem.
with discontinuities or peaky noise components, the gradie
is not always well-defined or computed with poor numerical
accuracy, which frequently results in failure of gradientA. Evolutionary Algorithms

I. INTRODUCTION

Il. PROPOSEDSCHEME

based algorithms[1]. . ' Typical evolutionary algorithms find optimal solutions by
However, evolutionary computation requires numeroUgerating the following steps.

cost function evaluations, which normally yields to heavy

computational burdens. The cost functions encountered conyentional Evolutionary Algorithm:
in practical optimization problems typically involve time
consuming computations such as numerical integration or
large matrix inversion, therefore frequent evaluation o t
cost function is not desirable. In standard evolutionagoal
rithms, a population of sample points evolves to selecebett
individuals based on the fithess measure, by the processe
called selection/reproduction. These processes inHgiiemt
pose repetitive evaluations of the cost functions withia th
previously-visited domains, of which the ranges reduce a¥here N, and N, represent the number of parents and
the population evolves toward next generations. Howeve?{fSPrings in each generation. IncreasiNg typically leads

conventional evolutionary algorithms use the computed col® "apid convergence in a small number of generations,
however, the computational demands per each generation
This work was conducted as a term project for CS229 machimaiten Increases Imearly W't_hN/_* thus actual convergence rate
class. The authors are grateful to Prof. Min-Jea Tahk at RAI& his (convergence per unit time, or convergence per number
gu|dance and discussions on eVOIU“Onary algonthms anﬂcappns. of function evaluatlons) does not reduce Slgnlflcantly. The
J.-H. Kim and T. Kim are with the Department of Aeronau- d al ithm i d . ffecti
tics and Astronautics, Stanford University, CA 94305.0nghank, proposed algorithm introduces a way to Increase etfective

t aehoonk}@t anf or d. edu N, without increasing the computational load linearly.

1) Initialization

2) Offspring generation/\y)

3) Cost evaluation

4) Fitness evaluation and selection for the next generation
(N, + Ny — N,: number of parents)

%) Check termination condition

(Initialize)

L
[
[|
Generate Offsprings Generate Additional Offsprings
| |
| | 7
Cost Evaluations Neural Networks
| = |
Selection

(Initialize) 1

Fig. 2. Multilayer feedforward neural networks

Fig. 1. Computationally efficient evolutionary algorithmh¢gled areas
represent the additional processes)

Output layer update:
B. Efficient Evolutionary Algorithm

In the proposed algorithm, we add a machine which
learns the parameter-cost relations, and consequently Vi:= vi + pog(w] 2™ 1 <4< Npy
several additional steps are needed to train it and usey, i1 :=vn,,+1 + 46 w: learning rate
it. Given that the computational cost required by the
machine training/computation is much cheaper than thaput layer update:
cost evaluation (a reasonable assumption for practical B T)
optimization problems with complex cost functions), the €i = 0vig (w; 1)) <4< N
load increased by these extra steps is assumed to be w;:= w; + ve;z®) v: learning rate
negligible. The flow chart is shown in Fig. 1.

6= —0E/0J® = (y*) — gk

where the superscrif) represents thé-th training set.

Efficient Evolutionary Algorithm: I11. NUMERICAL EXAMPLE

1) Initialization . The proposed optimization scheme is demonstrated in a

2) Offspring generationi,) simple numerical example.

3) Cost evaluatiorfand machine training)

4) Additional offspring generation/\(/) A. Introductory Example

5) Cost evaluation by additional offspring The first example is a single-variable optimization prob-
(by machine computation) lem. This function has its global minimum at* = 0,

6) Fitness evaluation and selection for the next generatiagith f(z*) = 0. Fig 3 shows the function on-10 <
(N, + Ny +_Nx_ — N, _)_ x < 10. Since this function has many local minima, any

7) Check termination condition gradient-based algorithm may not be a good tool for global

optimization.
C. Multilayer Feedforward Neural Networks minimize f(z) =1 — e~ /20 cos(2)

Multilayer feedforward neural networks with a single Approximation performances are shown by snapshots at
hidden layer are implemented to learn and approximate the bp P y b

X . . “several generations, in Fig. 3 (1st generation) and Fidlth(1
parameter-cost relations. The structures are shown |n2l.:|g.anol 21st generation). In both plots, solid curves are obtain

J(z)=[g(wiz) gwiz) - glwk, z) 1]v by using neural networks, and dotted are the actual cost
function curves.

_ Fig. 5 compares the convergence histories of both con-
Npy+1 — Y

veR »andg(y) = 1/(1 +e7¥). Ny, represents the | .~ ~ proposed evolutionary algorithms based on 50

number of hidden units. runs each. For both of algorithmd, = 10 and N, = 30 are

The neural networks are trained on-line as the evolutionar : ;
chosen as the evolurionaty algorithm (EA) setup parameters

algorithm evaluates the cost function. The gradient detscegndNN — 30 and Ny, — 10 are chosen additionally for the

%aik-ip:ropl)?g(%?o_n JE(IL%]()); It/Csz tl?sg;[nzllm ize the error funCtlonproposed algorithm (which effectively doubles the offapri
=22 ' population). We can observe that the proposed algorithm

wherez = [T 1]T, 2 € R", w; € R", 1 < i < Ny,

, Generation 1 Conventional evolutionary algorithm
C - T

Cost

60 80 100

Proposed evolutionary algorithm
T T

Cost

40 60 80 100
X Generation
Fig. 3. Cost functionf(z) = 1 — e~* /20 cos(2x) Fig. 5. Convergence histories of conventional vs. propadgdrithm
Generation 11 006 Generation 21 Medians based on 50 runs each
0.08 ‘ ‘
o | Conventional algorithm| |

Proposed algorithm

Fig. 4. Snapshots at the 11th and 21st generation

40 60 80 100
Generation

converges earlier than the original algorithm, while some
runs of the original algorithm failed to converge to the glbb
minimum.

For this toy example, a function evaluation is just com-
puting simple explicit functions, and does not require
heavy computational load; it is even cheaper than train-
ing/computing the machine. Therefore, actual time to conve
gence is increased by applying the new technique. Howevelrransfer function
in case of practical problems with time-consuming cost

Fig. 6. Convergence histories (median)

functions, the proposed algorithm will reduce the actuakti ¢ @g Cims, 8 — Cms, Cap + O, Coy,
to convergence. We will see this in the next chapter. 5 Ul I, U
y e & (e — (O + B O)e
IV. APPLICATION - AUTOPILOT DESIGN +(55Cm, Cx — @—qUCma)
. . . . I
A_pra_ctlcal autopilot design problem is chosen as theaz 52 Csy, 82 — 55 Ch, C25,5 + Oy Cy — Crn Oy
application problem. 3 U, o 7, T
o _ e 180 [Ba%eS — (50cC + 54 37Cm,)s
A. F-15 Longitudinal Dynamics nU +(55Cn, Cs — %Cm)
Fig. 7 shows the normal acceleration control loop of an
F-15 fighter.[3] The design parameters are the amplifier gain
Samp, and the rate gyro gaif,,.
Qzemd + g . 10 o Aircraft o
TABLE | - “r ; s+10 —| Dynamics
NUMERICAL DATA FOR A CRUISE FLIGHT CONDITION
h(m) CL [Cr. | Cr,, Cp S
6,096 024 | 417 | 0.4 0.05

U(misec) [Cp, [Cma | Cms, | 55Cmyg
189.63 035 | -029 | -05 -0.0512

Fig. 7. Normal acceleration control loop for F-15 aircraft

Conventional evolutionary algorithm
T T T

1.2¢

Inbetween area

081

0.6

z,cmd

0 10 20 30 40 50 60 70 80 90 100

ala
z

0.4
Conventional evolutionary algorithm
T T T T

0.2
““““ Reference model

Actual response

0 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

Generation

Fig. 8. Cost function for certai¥s.mp andSrg
Fig. 9. Evolution histories for a conventional algorithm

B. COSt FUﬂCtIOﬂ Proposed evolutionary algorithm
The desired reference model was set by a second orde!
model withw,, = 2(rad/s) and{ = 0.9.

2
az,ref o Wy

Gz,cmd 52 + QCWnS + W%

The two parametersS,,, and .S, ;) are to be optimized so O 2 a0 a0 = o 0 = 9 10
that the response signal is as close to the reference signa ‘ ‘
as possible. For faithful implication of this objective,eth 2 Proposed evolsionary slgerihm

optimization problem is defined as follows[4]. A graphical
interpretation is presented in Fig. 8.

ty
minimize J(Samp, Srq) = / laz(t) — azres(t)] dt
t

i

.
40 50 60 70 80 90 100
Generation

C. Improved Convergence

The evolution histories of the parameters by a conventional Fig. 10. Evolution histories for the proposed algorithm
algorithm are presented in Fig. 9. Note that some runs failed

to converge to the global optimum, because of the small . .
. : . required for these processes is usually much less than that

offspring population , = 10 and Ny = 30). The evolution required for the actual cost evaluations in practical ojatam

by the proposed algorithm (wittVy, = 30 and Ny, = 10) g P

are shown in Fig. 10, where all the trial runs converged to thtéon pro_b Iems,_ the_se proceses increase the_effectlvermfgsp
opulations with little increase of computational load.

correct global optimum. We can observe that the convergenge . . .
R X . -2 The proposed algorithm was applied to a numerical ex-
is significantly improved by the proposed algorithm, with li : : .

ample and a practical autopilot design problem. It was

tle increase of computational load. For this specific pnoble : _ .
. : " .~ _demonstrated to improve convergence characteristics- with
less than 10% of computational load is additionally reglire . : ?
out severely increasing computational load, compared to a

for neural network training and computation. However this . .
. . ((:]onvennonal algorithm.
number depends on the complexity of cost functions, an

will be much smaller for problems with more complicated REFERENCES
cost functions. [1] T.Back, Evolutionary Algorithms in Theory and Practic&®xford
V. C University Press, 1996.
. CONCLUSION [2] S.Haykin, Neural Networks - A Comprehensive Foundatiand ed.,
Computationally efficient evolutionary algorithms are de- _ Prentice Hall, 1999 : o
. L [3] J.H. Blakelock,Automatic Control of Aircraft and Missile€nd ed.,
veloped. Neural networks are implemented inside the evolu- Wiley, 1991.
tionary algorithm, learning the parameter-cost relatiddis- [4] C.S.Park and M.J.Tahk, "A Co-evolutionary Minimax Sahand its
line training leads the approximation accuracy to improse a ~ Application to Autopilot Design,’Preceeding of AIAA Guidance,
. .. : . Navigation, and Control ConferencBpston, USA, pp.408-415, Aug.
the populations evolve. Then additional offspring popalat 1998,
whose cost values are computed by the neural networks

are generated. Because the computational load addityonall

