
Computationally Efficient Evolutionary Algorithms:
Enhanced by On-line Machine Learning

Jong-Han Kim and Taehoon Kim

Abstract— An efficient evolutionary optimization algorithm
of which the convergence is improved is proposed. A “ma-
chine” which learns the parameter-cost relations on-line is
implemented inside the evolutionary algorithm, and the ma-
chine reuses the parameter-cost information as training sets to
update the hypothesis functions. As the populations converge
and regression accuracy improves, some portion of the cost
evaluations are substituted with machine-learned regressions,
and they are put into the selection process. This significantly
reduces the computational load and running time, because the
training/computation of the machine is much cheaper than
the actual cost function evaluations. Also, this implies that
the effective number of offsprings can be easily increased,
which leads to improved convergence with little increase of the
computational load. The improved convergence is shown by a
simple numerical examples and a practical design problem.

I. I NTRODUCTION

Evolution-based optimization methods have a number of
advantages over traditional hill-climbing (e.g., gradient
descent, Newton’s method) techniques. Unlike the gradient-
based methods, evolutionary algorithms can easily escape
from local minima, eventually converging toward the global
minimum. Also, the evolutionary algorithms can be applied
to any type of cost functions, since they do not require the
gradient or any higher order information. For cost functions
with discontinuities or peaky noise components, the gradient
is not always well-defined or computed with poor numerical
accuracy, which frequently results in failure of gradient-
based algorithms[1].

However, evolutionary computation requires numerous
cost function evaluations, which normally yields to heavy
computational burdens. The cost functions encountered
in practical optimization problems typically involve time-
consuming computations such as numerical integration or
large matrix inversion, therefore frequent evaluation of the
cost function is not desirable. In standard evolutionary algo-
rithms, a population of sample points evolves to select better
individuals based on the fitness measure, by the processes
called selection/reproduction. These processes inherently im-
pose repetitive evaluations of the cost functions within the
previously-visited domains, of which the ranges reduce as
the population evolves toward next generations. However,
conventional evolutionary algorithms use the computed cost

This work was conducted as a term project for CS229 machine learning
class. The authors are grateful to Prof. Min-Jea Tahk at KAIST for his
guidance and discussions on evolutionary algorithms and applications.

J.-H. Kim and T. Kim are with the Department of Aeronau-
tics and Astronautics, Stanford University, CA 94305.{jonghank,
taehoonk}@stanford.edu

information only for the fitness evaluation and dispose of
them without storing.

We claim that this wastefulness can be improved by using
machine learning techniques. A “machine” which learns the
parameter-cost relations is implemented inside the algorithm.
As the algorithm evaluates the cost function repetitively,the
machine reuses those information as training sets to update
the hypothesis functions. Since the region in which the cost
is evaluated contracts around the optimum as the generation
number increases, the regression performance around the
optimum gradually improves as they evolve; i.e., the machine
learns the large-scale macroscopic views of the cost functions
in the early stages of the evolution, and the scale reduces as
the population evolves, eventually achieving a very accurate
approximation around the optimum in the local microscopic
views. As the regression accuracy improves, some portion
of the cost evaluations are substituted with machine-learned
regressions, and will be put into the selection process. This
significantly reduces the computational load and running
time, because the training/computation of the machine is
much cheaper than the actual cost function evaluations. The
proposed algorithm is first shown using a simple numerical
example, then applied to a practical autopilot design opti-
mization problem.

II. PROPOSEDSCHEME

A. Evolutionary Algorithms

Typical evolutionary algorithms find optimal solutions by
iterating the following steps.

Conventional Evolutionary Algorithm:

1) Initialization
2) Offspring generation (Nλ)
3) Cost evaluation
4) Fitness evaluation and selection for the next generation

(Nµ + Nλ 7−→ Nµ: number of parents)
5) Check termination condition

where Nµ and Nλ represent the number of parents and
offsprings in each generation. IncreasingNλ typically leads
to rapid convergence in a small number of generations,
however, the computational demands per each generation
increases linearly withNλ, thus actual convergence rate
(convergence per unit time, or convergence per number
of function evaluations) does not reduce significantly. The
proposed algorithm introduces a way to increase effective
Nλ without increasing the computational load linearly.

Generate Offsprings

Cost Evaluations

Generate Additional Offsprings

Neural Networks

Selection

Initialize

Terminate?

Initialize

Fig. 1. Computationally efficient evolutionary algorithm (Shaded areas
represent the additional processes)

B. Efficient Evolutionary Algorithm

In the proposed algorithm, we add a machine which
learns the parameter-cost relations, and consequently
several additional steps are needed to train it and use
it. Given that the computational cost required by the
machine training/computation is much cheaper than the
cost evaluation (a reasonable assumption for practical
optimization problems with complex cost functions), the
load increased by these extra steps is assumed to be
negligible. The flow chart is shown in Fig. 1.

Efficient Evolutionary Algorithm:
1) Initialization
2) Offspring generation (Nλ)
3) Cost evaluation(and machine training)
4) Additional offspring generation (Nλ′)
5) Cost evaluation by additional offspring

(by machine computation)
6) Fitness evaluation and selection for the next generation

(Nµ + Nλ + Nλ′ 7−→ Nµ)
7) Check termination condition

C. Multilayer Feedforward Neural Networks

Multilayer feedforward neural networks with a single
hidden layer are implemented to learn and approximate the
parameter-cost relations. The structures are shown in Fig.2.

J(x) = [g(wT
1 z) g(wT

2 z) · · · g(wT
Nhu

z) 1] v

where z = [xT 1]T , x ∈ R
n, wi ∈ R

n+1, 1 ≤ i ≤ Nhu,
v ∈ R

Nhu+1, andg(y) = 1/(1 + e−y). Nhu represents the
number of hidden units.

The neural networks are trained on-line as the evolutionary
algorithm evaluates the cost function. The gradient descent
back-propagation algorithm to minimize the error function
E =

∑

k
1
2 (y(k) − J (k))2 was used[2].

g(y)

g(y)

g(y)

g(y)

x

x

1

2

1

Weight vectors Weight vector

 v

Σ
J

1

w
i

Fig. 2. Multilayer feedforward neural networks

Output layer update:

δ = − ∂E/∂J (k) = (y(k) − J (k))

vi := vi + µδg(wT
i z(k)) 1 ≤ i ≤ Nhu

vNhu+1 := vNhu+1 + µδ µ: learning rate

Input layer update:

ǫi = δvig
′(wT

i z(k))) 1 ≤ i ≤ Nhu

wi := wi + νǫiz
(k) ν: learning rate

where the superscript(k) represents thek-th training set.

III. N UMERICAL EXAMPLE

The proposed optimization scheme is demonstrated in a
simple numerical example.

A. Introductory Example

The first example is a single-variable optimization prob-
lem. This function has its global minimum atx∗ = 0,
with f(x∗) = 0. Fig 3 shows the function on−10 ≤
x ≤ 10. Since this function has many local minima, any
gradient-based algorithm may not be a good tool for global
optimization.

minimize f(x) = 1 − e−x2/20 cos(2x)

Approximation performances are shown by snapshots at
several generations, in Fig. 3 (1st generation) and Fig.4 (11th
and 21st generation). In both plots, solid curves are obtained
by using neural networks, and dotted are the actual cost
function curves.

Fig. 5 compares the convergence histories of both con-
ventional and proposed evolutionary algorithms based on 50
runs each. For both of algorithms,Nµ = 10 andNλ = 30 are
chosen as the evolurionaty algorithm (EA) setup parameters,
andNλ′ = 30 andNhu = 10 are chosen additionally for the
proposed algorithm (which effectively doubles the offspring
population). We can observe that the proposed algorithm

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

J

Generation 1

Fig. 3. Cost functionf(x) = 1 − e−x2/20 cos(2x)

−4 −3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

J

Generation 11

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

x

J

Generation 21

Fig. 4. Snapshots at the 11th and 21st generation

converges earlier than the original algorithm, while some
runs of the original algorithm failed to converge to the global
minimum.

For this toy example, a function evaluation is just com-
puting simple explicit functions, and does not require
heavy computational load; it is even cheaper than train-
ing/computing the machine. Therefore, actual time to conver-
gence is increased by applying the new technique. However,
in case of practical problems with time-consuming cost
functions, the proposed algorithm will reduce the actual time
to convergence. We will see this in the next chapter.

IV. A PPLICATION - AUTOPILOT DESIGN

A practical autopilot design problem is chosen as the
application problem.

A. F-15 Longitudinal Dynamics

Fig. 7 shows the normal acceleration control loop of an
F-15 fighter.[3] The design parameters are the amplifier gain
Samp, and the rate gyro gainSrg.

TABLE I

NUMERICAL DATA FOR A CRUISE FLIGHT CONDITION

h(m) CL CLα
CLδe

CD

6,096 0.24 4.17 0.4 0.05

U(m/sec) CDα
Cmα Cmδe

c
2U

Cmq

189.63 0.35 -0.29 -0.5 -0.0512

0 20 40 60 80 100

10
−5

10
0

Conventional evolutionary algorithm

C
os

t

0 20 40 60 80 100

10
−5

10
0

Proposed evolutionary algorithm

Generation

C
os

t

Fig. 5. Convergence histories of conventional vs. proposedalgorithm

0 20 40 60 80 100
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Medians based on 50 runs each

Generation

C
os

t

Conventional algorithm
Proposed algorithm

Fig. 6. Convergence histories (median)

Transfer function

θ̇

δe
=

mU
Sq Cmδe

s − Cmδe
Czα

+ Cmα
Czδe

(

mUIy

(Sq)2cs2 − (
Iy

SqcCzα
+ mU

Sq
c

2U Cmq
)s

+(c
2U Cmq

Czα
− mU

Sq Cmα
)

)

az

δe
=

Iy

SqcCzδe
s2 − c

2U Cmq
Czδe

s + Cmδe
Czα

− Cmα
Czδe

180g
πU

(

mUIy

(Sq)2cs2 − (
Iy

SqcCzα
+ mU

Sq
c

2U Cmq
)s

+(c
2U Cmq

Czα
− mU

Sq Cmα
)

)

 10

s+10
Aircraft
Dynamics

 Samp

 Srg

az,cmd

az
δe

+

+

+

-

θ
 .

Fig. 7. Normal acceleration control loop for F-15 aircraft

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

a z /
a z,

cm
d

Reference model
Actual response

Cost :
Inbetween area

Fig. 8. Cost function for certainSamp andSrg

B. Cost Function

The desired reference model was set by a second order
model withωn = 2(rad/s) andζ = 0.9.

az,ref

az,cmd
=

ω2
n

s2 + 2ζωns + ω2
n

The two parameters (Samp andSrg) are to be optimized so
that the response signal is as close to the reference signal
as possible. For faithful implication of this objective, the
optimization problem is defined as follows[4]. A graphical
interpretation is presented in Fig. 8.

minimize J(Samp, Srg) =

∫ tf

ti

|az(t) − az,ref (t)| dt

C. Improved Convergence

The evolution histories of the parameters by a conventional
algorithm are presented in Fig. 9. Note that some runs failed
to converge to the global optimum, because of the small
offspring population (Nµ = 10 andNλ = 30). The evolution
by the proposed algorithm (withNλ′ = 30 and Nhu = 10)
are shown in Fig. 10, where all the trial runs converged to the
correct global optimum. We can observe that the convergence
is significantly improved by the proposed algorithm, with lit-
tle increase of computational load. For this specific problem,
less than 10% of computational load is additionally required
for neural network training and computation. However this
number depends on the complexity of cost functions, and
will be much smaller for problems with more complicated
cost functions.

V. CONCLUSION

Computationally efficient evolutionary algorithms are de-
veloped. Neural networks are implemented inside the evolu-
tionary algorithm, learning the parameter-cost relations. On-
line training leads the approximation accuracy to improve as
the populations evolve. Then additional offspring populations
whose cost values are computed by the neural networks
are generated. Because the computational load additionally

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2
Conventional evolutionary algorithm

Generation

S
rg

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10
Conventional evolutionary algorithm

S
am

p

Fig. 9. Evolution histories for a conventional algorithm

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2
Proposed evolutionary algorithm

Generation

S
rg

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10
Proposed evolutionary algorithm

S
am

p

Fig. 10. Evolution histories for the proposed algorithm

required for these processes is usually much less than that
required for the actual cost evaluations in practical optimiza-
tion problems, these proceses increase the effective offspring
populations with little increase of computational load.

The proposed algorithm was applied to a numerical ex-
ample and a practical autopilot design problem. It was
demonstrated to improve convergence characteristics with-
out severely increasing computational load, compared to a
conventional algorithm.

REFERENCES

[1] T.Bäck, Evolutionary Algorithms in Theory and Practice,Oxford
University Press, 1996.

[2] S.Haykin, Neural Networks - A Comprehensive Foundation,2nd ed.,
Prentice Hall, 1999

[3] J.H. Blakelock,Automatic Control of Aircraft and Missiles,2nd ed.,
Wiley, 1991.

[4] C.S.Park and M.J.Tahk, ”A Co-evolutionary Minimax Solver and its
Application to Autopilot Design,”Preceeding of AIAA Guidance,
Navigation, and Control Conference,Boston, USA, pp.408-415, Aug.
1998.

