
Automatic Construction of Cell Genealogical Histories
Matt Jachowski

Rajesh Ranganath

Introduction

Many research projects in the biological sciences have benefited from software and hardware that allows the

automatic collection of large amounts of data. However, the full benefits of having this wealth of new data remain

unrealized as much tedious analysis is still done by hand. Stem cell research is one sub-field suffering from this

problem. Stem cell researchers have collected time-lapsed images of microwells populated with dividing stem cells.

This data has allowed new analysis of stem cell division patterns. The data promises many new discoveries, but

these discoveries are bottlenecked by the lack of automatic methods for generating cell genealogical histories.

Initially, it may seem that an off-the-shelf method to identify cells, such as a binary SVM, would be applicable to

this problem, but the lack of persistent features and the difficulty of solving the overlap problem using joint

classification leaves this method infesable to solve the cell genealogical history problem. Therefore we propose a

more complex approach that hypothesizes cell count sequences, merges the hypotheses using a conditional random

field, and finally establishes correspondence throughout time using a Kalman Filter.

Methodology

We achieve automatic construction of these cell genealogical histories from movies of dividing cells. Our technique

involves five steps. In the first step, we apply the Hough circle transform to identify regions highly likely to be cells.

Next, we apply two algorithms – local maximum finding and weighted k-medoids clustering algorithms – to

estimate cell counts. Then, we input these two sequences of cell counts as observed variables for a conditional

random field to generate the most likely sequence of cell counts. Given these determined cell counts, we match the

positions determined by reapplying the local maximum finding and weighted k-medoids algorithms. Finally, we

construct cell tracks by establishing interframe cell correspondence with a Kalman filter.

Identifying Cell Regions

Each movie frame that we consider contains a microwell and

some number of cells contained within the well. To identify cell

regions, we first apply a bottom-hat filter to the image to isolate

the microwell and cell boundaries as in [1].

In early stages of the project, we then proceeded by isolating the

microwell boundary, easily achieved through segmentation or

hough ellipse detection, and removing it from the image frame.

However, we found this approach to be problematic as, in many

images, cells hug the wall of the microwell, causing these cells

to be either partially or fully removed by the microwell-removal process.

By applying a Hough circle tranform to detect cells directly from the filtered image, we found that we could achieve

reliable and robust cell region identification without explicitly removing the microwell. Given an approximate range

of cell radii, which can be learned from a few expert-labeled cell instances, we apply a series of Hough circle

transforms for several radii in this range. We then sum the accumulators resulting from each of these transforms.

The resulting accumulator exhibits strong peaks at cell centers. After smoothing the accumulator, we threshhold to

leave only those regions most likely to be cell centers.

Figure 1. (a) Original Image. (b) Bottom-

Hat Filtered Image.

(a) (b)

Estimating Cell Counts

Given these likely cell regions, we then estimate cell counts with

two different clustering techniqes. The first technique finds local

maxima in the smoothed and threshholded accumulator. The

second technique repeatedly applies the weighted k-medoids

clustering algorithm to the smoothed and threshholded

accumulator until it finds a reasonable k.

The k-medoids algorithm is related to the k-means algorithm,

differing in an added requirement that cluster centers be cluster

points. Given k, the algorithm finds k clusters and the point

within each cluster with the minimal distance to all points within

the cluster. Since each cluster point has a weight – its

accumulator count – and higher weights correspond to higher

likelihood of points being cell centers, we employ a weighted

version of k-medoids to encourage k-medoids cluster centers to

converge on cell centers. To optimize the weighted k-means

objective function subject to the constraint that the centroids

belong to the set of input points, we use the Partitioning Around

Medoids algorithm[2]. Finally, since k is unknown, we

implement an iterated process, where we first hypothesize one

cell, then two cells, and so on, until some value of k results in the

algorithm assigning cluster centers that are closer than the

approximate diameter of a cell. Since two cell centers must be at

least one cell diameter apart, we can reject this clustering and

settle on k-1 as the probable cell count.

Conditional Random Field

Given the cell counts estimated by k-mediods and the local maxima finding algorithms, it may seem plausible to

simply use the cell count estimates of one of the previous frames to localize cells, but this leads to avoidable errors.

Consider figures 4b and 4d where local maxima finding and k-mediods fail to identify correct cell counts due to

Hough responses created by the microwell boundary. Another possible avoidable error can occur when one

technique outputs the correct cell count and the other fails to, due to assumptions made in each algorithm. The

combination of these errors can lead to different inaccurate sequences of cell counts from each algorithm.

Figure 2. Accumulator resulting from hough

circle transform being applied to above image.

Figure 3. Smoothed and threshholded

accumulator. Spikes represent likely cell regions.

(a) (b)

(c) (d)

Figure 4. Estimates of cell counts/positions

from the local maxima finding algorithm

(a,b), and the weighted k-medoids

algorithm (c,d). (a) and (c) are examples of

when the algorithms work well. (b) and (d)

are examples of when the algorithms are

lacking.

To produce a more accurate sequence of cell counts we implemented a first order conditional random field where

each state represents a fixed cell count. We use the two hypothesized count sequences returned by k-medoids and

the local maxima algorithm as the observed variables of our model. The mathematical model of our conditional

random field is given below.

Where x is the observed input, π is the parse (a sequence of states), and fj is the jth feature

Our condtional random field had two types of features: type 1 features and type 2 features. Type 1 features are

functions of multiple sequences of observed variables, while type 2 features are functions of only one. The score at

time i is boosted by type 1 features if all the observed cell counts are equal to 𝜋i. Type 2 features are defined by the

following formula:

𝑓 𝜋i, 𝜋i-1, 𝑖,x = 𝑝 𝜋i ; 𝜋i-1, σ ∗ 𝑝 𝜋i ; μ, σ

where μ is the expected value of the observed sequence with respect to a normal distribution centered at i, and p is

the normal PDF.

Using our CRF model with the two hypothesized cell count sequences, we implemented the Viterbi algorithm to

find the most likely state parse given the observed variables. Since our states represent cell counts, the Viterbi

algorithm output for the each position represents the most likely cell count.

Finding Cell Centers Given Fixed Cell Counts

Given the cell counts for each frame as determined by the CRF, we reapply the local

maxima finding and weighted k-medoid algorithms to pinpoint cell centers. In the case

of the weighted k-medoid algorithm, the benefit of predetermined k is clear: we no

longer need to iterate through possible values of k. However, it is harder to force the

local maxima finder to return exactly k local maxima for any given frame. We resolve

this by applying the following method: if the result returns more than k local maxima,

pick the k points with the highest accumulator weights, otherwise return all of the local

maxima found.

We then apply the Hungarian algorithm [3] to match the corresponding cell centers

from each algorithm, and output the single cell center in each pair with the highest

hough circle accumulator weight.

Error Analysis: Cell Count and Position Error

We evaluate our cell count and position error on a 235 frame movie independent from the data used during the

project development. We define the overall cell count error to be the average of the per-frame cell count errors. The

overall cell position error is calcuated as the average, over all frames, of the average cell position error in each frame

(in pixels).

Cell Count Error =
1

N frames

counttrue(i) countobserved(i)

counttrue(i)(frame i)

Cell Position Error =
1

N frames

1

Ncells
postrue(c) posobserved(c) 2

(cell c in
frame i)

(frame i)

Figure 5. The incorrect

cell counts displayed in

(4b) and (4d) have been

corrected by the CRF.

The average cell count error is on the order of 10%, as shown in figure 6. Note that each frame in the 235-frame

movie analyzed had 2-8 cells, so any under- or over-labeling, even if by one cell, had a signficant impact on the

error. As desired, the cell count error is smallest for the CRF-

determined cell counts. Additionally, the cell count error for

the final cell finding algorithm – matching the results of the

local maxima finding and weighted k-medoids algorithms

with pre-determined k – is lower than either of the two

algorithms with unknown k. As shown in figure 7, over half

of the frames were labeled with zero error in cell count. And,

the CRF cell count eliminates the most egregious errors in

the local maxima finder and weighted k-medoids counts.

As shown in figure 8, the average cell position error is on the

order of 1 pixel. Given that the cells are approximately 6

pixels in diameter, and human labeling error is also on the

order of 1 pixel, the cell position labelings generated by our

method are excellent.

Cell Tracking and Track Merging

In the final step of the algorithm, we combine our cell position data to synthesize cell tracks through time. First level

cell tracking is achieved through use of a Kalman filter [4]. The state of cell i at frame k is given by:

1000

0100

1010

0101

 , , 1 AwAxxx
i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

y

x

y

x

We observe cell positions, given by:

0010

0001
 , ,

ˆ

ˆ
1 HvHzzz

i

k

i

k

i

ki

k

i

ki

k
y

x

w and v represent process and measurement noise drawn from gaussian distributions.

Cell Count Error

0 0.05 0.1 0.15 0.2

Local Maxima

Weighted K-

Medoid

CRF

CRF Matched-

Centers

M
e
th

o
d

Average Per Frame Error in Cell Count

Histogram of Per Frame Errors in Cell Counts [235 Frame Movie]

0

20

40

60

80

100

120

140

160

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Error Bin

N
u
m

b
e
r

o
f

F
ra

m
e
s

Local Max

Weighted K-Medoid

C RF

Figure 6. Cell count error is on the order

of 10%. As expected, CRF cell count

error is the lowest.

Figure 7. A histogram of per-frame cell count errors

shows that over half of the frames are labeled with

zero error in cell count.

Cell Position Error

0 0.2 0.4 0.6 0.8 1 1.2

Local Maxima

Weighted K-

Medoid

CRF Matched-

Centers

M
e
th

o
d

Average Per Cell Error in Position [Pixels]

Figure 8. Cell position error is approximately 1

pixel for cells with diameters of approximately

6 pixels.

Given a set of cell states for frame k-1, we calculate the cell states for frame k by applying the Hungarian algorithm

to match observations in k with states from k-1, and then applying the appropriate Kalman filter. Any cells observed

in k-1 that are not observed in k are propagated according to the Kalman filter prediction to get a probable location

in frame k. We allow such propagations to occur up to two frames in a row before we determine that a cell must

have died. This allows us to continue tracking a cell even if we fail to identify it for one or two frames. Such a case

might occur when two cells temporarily overlap, or our method simply fails to identify the cell.

Given these cell tracks, we then apply a higher level merging algorithm to merge tracks that represent the same cell

or descendents of the same cell. This algorithm determines a track label for each track based on its distance, in both

space and time, to other existing cell tracks. A typical result is shown in figure 9. The dataset we worked with was

entirely unlabeled, so figure 8 represents the result of our cell tracking and track merging algorithm applied to hand-

labeled cell position data.

Conclusion

This paper details our technique for reconstructing cell genealogical histories. We accomplished this by first

identifying and accurately counting the cells, then using the counts to confidently localize the cells. Given this data

we use the Hungarian algorithm combined with a Kalman filter to establish correspondence through time. Our

method localized the cells accurately and produced promising cell histories as a final result.

Moving forward we would ask the biologists to provide us with higher image and time resolution data to allow us to

leverage more complex techniques, such as inference on cell contour shape, to achieve more robust cell detection.

We would also like to incorporate the estimated cell positions into our CRF to further improve our results. Finally,

we would like to quantify cell histories and compare the results to published techniques such as [5].

References

[1] “Tracking Stem Cell Genealogical Trees in Mircrowell” Ranganath and Kakaradov. CS223B Project. 2007

[2] Partitioning Around Medoids. 1987

[3] “Hungarian Algorithm” Matlab implementation by Alex Melin, 2006.

[4] “Kalman Filter Toolbox” Matlab implementation by Kevin Murphy, 1998.

[5] “Cell population tracking and lineage construction using Multiple-Model Dynamics Filters and Spatiotemporal

Optimization”; Li, Kang; Kanade, Takeo; Proceedings of 10
th

 Intl Conference on MICCAI; 2007, pp. 295-302.

Figure 8. Cell tracks generated from hand-

labeled cell position data. There are 4 parent

cells. One of the cells (red) divides, yielding

two children.

Figure 9. Cell tracks generated by our

algorithm. The plot correctly shows 4 parent

cells, and one of them (red) dividing. The plot

incorrectly crosses the green and blue paths.

