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Introduction 

 

Many research projects in the biological sciences have benefited from software and hardware that allows the 

automatic collection of large amounts of data. However, the full benefits of having this wealth of new data remain 

unrealized as much tedious analysis is still done by hand. Stem cell research is one sub-field suffering from this 

problem. Stem cell researchers have collected time-lapsed images of microwells populated with dividing stem cells. 

This data has allowed new analysis of stem cell division patterns. The data promises many new discoveries, but 

these discoveries are bottlenecked by the lack of automatic methods for generating cell genealogical histories. 

 

Initially, it may seem that an off-the-shelf method to identify cells, such as a binary SVM, would be applicable to 

this problem, but the lack of persistent features and the difficulty of solving the overlap problem using joint 

classification leaves this method infesable to solve the  cell genealogical history problem. Therefore we propose a 

more complex approach that hypothesizes cell count sequences, merges the hypotheses using a conditional random 

field, and finally establishes correspondence throughout time using a Kalman Filter. 

 

Methodology 
 

We achieve automatic construction of these cell genealogical histories from movies of dividing cells. Our technique 

involves five steps. In the first step, we apply the Hough circle transform to identify regions highly likely to be cells. 

Next, we apply two algorithms – local maximum finding and weighted k-medoids clustering algorithms – to 

estimate cell counts. Then, we input these two sequences of cell counts as observed variables for a conditional 

random field to generate the most likely sequence of cell counts. Given these determined cell counts, we match the 

positions determined by reapplying the local maximum finding and weighted k-medoids algorithms. Finally, we 

construct cell tracks by establishing interframe cell correspondence with a Kalman filter. 

 

Identifying Cell Regions 

 

Each movie frame that we consider contains a microwell and 

some number of cells contained within the well. To identify cell 

regions, we first apply a bottom-hat filter to the image to isolate 

the microwell and cell boundaries as in [1]. 

 

In early stages of the project, we then proceeded by isolating the 

microwell boundary, easily achieved through segmentation or 

hough ellipse detection, and removing it from the image frame. 

However, we found this approach to be problematic as, in many 

images, cells hug the wall of the microwell, causing these cells 

to be either partially or fully removed by the microwell-removal process. 

 

By applying a Hough circle tranform to detect cells directly from the filtered image, we found that we could achieve 

reliable and robust cell region identification without explicitly removing the microwell. Given an approximate range 

of cell radii, which can be learned from a few expert-labeled cell instances, we apply a series of Hough circle 

transforms for several radii in this range. We then sum the accumulators resulting from each of these transforms. 

The resulting accumulator exhibits strong peaks at cell centers. After smoothing the accumulator, we threshhold to 

leave only those regions most likely to be cell centers. 

Figure 1. (a) Original Image. (b) Bottom-

Hat Filtered Image. 

(a) (b) 



 

Estimating Cell Counts 
 

Given these likely cell regions, we then estimate cell counts with 

two different clustering techniqes. The first technique finds local 

maxima in the smoothed and threshholded accumulator. The 

second technique repeatedly applies the weighted k-medoids 

clustering algorithm to the smoothed and threshholded 

accumulator until it finds a reasonable k. 

 

The k-medoids algorithm is related to the k-means algorithm, 

differing in an added requirement that cluster centers be cluster 

points. Given k, the algorithm finds k clusters and the point 

within each cluster with the minimal distance to all points within 

the cluster. Since each cluster point has a weight – its 

accumulator count – and higher weights correspond to higher 

likelihood of points being cell centers, we employ a weighted 

version of k-medoids to encourage k-medoids cluster centers to 

converge on cell centers.  To optimize the weighted k-means 

objective function subject to the constraint that the centroids 

belong to the set of input points, we use the Partitioning Around 

Medoids algorithm[2]. Finally, since k is unknown, we 

implement an iterated process, where we first hypothesize one 

cell, then two cells, and so on, until some value of k results in the 

algorithm assigning cluster centers that are closer than the 

approximate diameter of a cell. Since two cell centers must be at 

least one cell diameter apart, we can reject this clustering and 

settle on k-1 as the probable cell count. 

 

Conditional Random Field 
 

Given the cell counts estimated by k-mediods and the local maxima finding algorithms, it may seem plausible to 

simply use the cell count estimates of one of the previous frames to localize cells, but this leads to avoidable errors. 

Consider figures 4b and 4d where local maxima finding and k-mediods fail to identify correct cell counts due to 

Hough responses created by the microwell boundary. Another possible avoidable error can occur when one 

technique outputs the correct cell count and the other fails to, due to assumptions made in each algorithm. The 

combination of these errors can lead to different inaccurate sequences of cell counts from each algorithm.  

 

Figure 2. Accumulator resulting from hough 

circle transform being applied to above image. 

Figure 3. Smoothed and threshholded 

accumulator. Spikes represent likely cell regions. 

(a) (b) 

(c) (d) 

Figure 4. Estimates of cell counts/positions 

from the local maxima finding algorithm 

(a,b), and the weighted k-medoids 

algorithm (c,d). (a) and (c) are examples of 

when the algorithms work well. (b) and (d) 

are examples of when the algorithms are 

lacking. 



To produce a more accurate sequence of cell counts we implemented a first order conditional random field where 

each state represents a fixed cell count.  We use the two hypothesized count sequences returned by k-medoids and 

the local maxima algorithm as the observed variables of our model.  The mathematical model of our conditional 

random field is given below.  

 

 

 
Where x is the observed input, π is the parse (a sequence of states), and fj is the jth feature  

 
Our condtional random field had two types of features: type 1 features and type 2 features.  Type 1 features are 

functions of multiple sequences of observed variables, while type 2 features are functions of only one.  The score at 

time i is boosted by type 1 features if all the observed cell counts are equal to 𝜋i.  Type 2 features are defined by the 

following formula:  

 

𝑓 𝜋i, 𝜋i-1, 𝑖,x = 𝑝 𝜋i ; 𝜋i-1, σ ∗ 𝑝 𝜋i ; μ, σ  

 
where μ is the expected value of the observed sequence with respect to a normal distribution centered at i, and p is 

the normal PDF. 

 

Using our CRF model with the two hypothesized cell count sequences, we implemented the Viterbi algorithm to 

find the most likely state parse given the observed variables. Since our states represent cell counts, the Viterbi 

algorithm output for the each position represents the most likely cell count.   

 

Finding Cell Centers Given Fixed Cell Counts 
 

Given the cell counts for each frame as determined by the CRF, we reapply the local 

maxima finding and weighted k-medoid algorithms to pinpoint cell centers. In the case 

of the weighted k-medoid algorithm, the benefit of predetermined k is clear: we no 

longer need to iterate through possible values of k. However, it is harder to force the 

local maxima finder to return exactly k local maxima for any given frame. We resolve 

this by applying the following method: if the result returns more than k local maxima, 

pick the k points with the highest accumulator weights, otherwise return all of the local 

maxima found. 

 

We then apply the Hungarian algorithm [3] to match the corresponding cell centers 

from each algorithm, and output the single cell center in each pair with the highest 

hough circle accumulator weight. 

 

Error Analysis: Cell Count and Position Error 

 

We evaluate our cell count and position error on a 235 frame movie independent from the data used during the 

project development. We define the overall cell count error to be the average of the per-frame cell count errors. The 

overall cell position error is calcuated as the average, over all frames, of the average cell position error in each frame 

(in pixels). 

 



Cell Count Error =  
1

N frames

counttrue(i) countobserved(i)

counttrue(i)(frame i )

  

 



Cell Position Error =  
1

N frames

1
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postrue(c) posobserved(c) 2

(cell c in 
frame i )


(frame i )


 

 

Figure 5. The incorrect 

cell counts displayed in 

(4b) and (4d) have been 

corrected by the CRF. 



 

The average cell count error is on the order of 10%, as shown in figure 6. Note that each frame in the 235-frame 

movie analyzed had 2-8 cells, so any under- or over-labeling, even if by one cell, had a signficant impact on the 

error. As desired, the cell count error is smallest for the CRF-

determined cell counts. Additionally, the cell count error for 

the final cell finding algorithm – matching the results of the 

local maxima finding and weighted k-medoids algorithms 

with pre-determined k – is lower than either of the two 

algorithms with unknown k. As shown in figure 7, over half 

of the frames were labeled with zero error in cell count. And, 

the CRF cell count eliminates the most egregious errors in 

the local maxima finder and weighted k-medoids counts. 

 

As shown in figure 8, the average cell position error is on the 

order of 1 pixel. Given that the cells are approximately 6 

pixels in diameter, and human labeling error is also on the 

order of 1 pixel, the cell position labelings generated by our 

method are excellent. 

 

 

Cell Tracking and Track Merging 

 

In the final step of the algorithm, we combine our cell position data to synthesize cell tracks through time. First level 

cell tracking is achieved through use of a Kalman filter [4]. The state of cell i at frame k is given by: 
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We observe cell positions, given by: 
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w and v represent process and measurement noise drawn from gaussian distributions. 
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Figure 6. Cell count error is on the order 

of 10%. As expected, CRF cell count 

error is the lowest. 

Figure 7.  A histogram of per-frame cell count errors 

shows that over half of the frames are labeled with 

zero error in cell count.   
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Figure 8. Cell position error is approximately 1 

pixel for cells with diameters of approximately 

6 pixels. 



 

Given a set of cell states for frame k-1, we calculate the cell states for frame k by applying the Hungarian algorithm 

to match observations in k with states from k-1, and then applying the appropriate Kalman filter. Any cells observed 

in k-1 that are not observed in k are propagated according to the Kalman filter prediction to get a probable location 

in frame k. We allow such propagations to occur up to two frames in a row before we determine that a cell must 

have died. This allows us to continue tracking a cell even if we fail to identify it for one or two frames. Such a case 

might occur when two cells temporarily overlap, or our method simply fails to identify the cell. 

 

Given these cell tracks, we then apply a higher level merging algorithm to merge tracks that represent the same cell 

or descendents of the same cell. This algorithm determines a track label for each track based on its distance, in both 

space and time, to other existing cell tracks. A typical result is shown in figure 9. The dataset we worked with was 

entirely unlabeled, so figure 8 represents the result of our cell tracking and track merging algorithm applied to hand-

labeled cell position data. 

 

 

 

 

 

 

Conclusion 

 

This paper details our technique for reconstructing cell genealogical histories.  We accomplished this by first 

identifying and accurately counting the cells, then using the counts to confidently localize the cells.  Given this data 

we use the Hungarian algorithm combined with a Kalman filter to establish correspondence through time.  Our 

method localized the cells accurately and produced promising cell histories as a final result. 

 

Moving forward we would ask the biologists to provide us with higher image and time resolution data to allow us to 

leverage more complex techniques, such as inference on cell contour shape, to achieve more robust cell detection.  

We would also like to incorporate the estimated cell positions into our CRF to further improve our results.  Finally, 

we would like to quantify cell histories and compare the results to published techniques such as [5]. 
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Figure 8. Cell tracks generated from hand-

labeled cell position data. There are 4 parent 

cells. One of the cells (red) divides, yielding 

two children. 

Figure 9. Cell tracks generated by our 

algorithm.  The plot correctly shows 4 parent 

cells, and one of them (red) dividing. The plot 

incorrectly crosses the green and blue paths. 


