
Enabling a Robot to Open Doors
Andrei Iancu, Ellen Klingbeil, Justin Pearson

Stanford University - CS 229 - Fall 2007

I. Introduction

The area of robotic exploration is a field of growing interest and
research in the robotics and computer science communities.
Ideally, a human would send a robot into an area otherwise too
dangerous for the human to enter, such as a smoke-filled
building, a structurally-unsound bridge, or a radioactive area.
Although robots already exist which can map a building's floor
plan, they can only do so provided the doors are all open – a
robot that can identify and open doors as it maps a building
remains to be developed.

The goal of this project was to use machine learning to enable a
robot to identify the location of a door handle in an image,
classify the door handle type, and finally open the door. The
data set considered consisted of three door handle types – left
and right-turn handles and elevator buttons. Several machine
learning algorithms were implemented using a variety of
different feature sets. For both the identification and
classification problems, the best results were achieved using a
derived feature set with Principal Component Analysis (PCA)
and the Support Vector Machine (SVM) algorithm. Accuracy for
identifying a door handle in a scene was approximately 99%,
and the accuracy for classifying the door handle type was
approximately 99.5%. The algorithms were demonstrated on the
STanford Artificial Intelligence Robot (STAIR), which was able
to successfully execute the motion of pushing down on a door
handle to unlatch it.

II. Identifying a Door Handle in a Panoramic Image

In terms of developing the capability of identifying a single door
handle in a tightly-cropped image, we have attempted
implementing several different solutions before converging on
the use of a binary classification SVM. As an initial cut at the
problem, logistic regression, naïve Bayes and SVM were
implemented on a data set consisting of approximately 500 25
by 25 images half of which depicted door handles with the rest
consisting of other varied building scenery. The pixel RGB
values were used as the features. The results were not very
encouraging. Naïve Bayes was clearly the most unsuitable
algorithm with almost 50% error on most test sets. In retrospect,
this was to be expected as the Naïve Bayes assumptions on
feature independence would obviously be invalid when applied
to image pixels. Logistic regression provided a starting test set
error of approximately 25% to 30%, while the SVM’s test set
error hovered around 15%. Based on this initial round of tests,
we decided to pursue the binary classification SVM in more
depth. Although multiple implementations of the SVM
algorithm were assessed, the software ultimately used was SVM
Light developed by Thorsten Joachims at Cornell University. [1]

It should be noted that in all SVM training from this point
onward, false positive errors were weighted much more heavily
than false negative errors in order to eliminate as many of the

spurious positive door handle identifications in a panoramic
image as possible. The first attempt at refining the SVM
algorithm centered on varying the size of the input images and
observing the effect on training/test set error with the pixel RGB
values still being used as the features. The image size was
varied from 4 by 4 to 25 by 25 and the primary observation from
this set of tests was that the training set error would generally be
zero for all image sizes larger than 5 by 5 while the test set error
would hover around a fixed mean of ~12% to 15%. This seemed
to indicate that our algorithms were over-fitting and that we
needed to either get more training examples or use a better set of
features. We opted to use a set of derived features that were
computed from the pixel RGB values and designed to capture
three types of local cues: texture variations, texture gradients,
and color, by convolving the image with 15 filters (same features
used for classification, see Section III for a more detailed
description), our test set error dropped slightly so that it now
hovered around 9% to 12%. However, even with the derived
features, our training set error was still always zero so the over-
fitting problem seemed to persist.

To attempt to overcome the over-fitting problem when using the
derived features, we resorted to PCA and attempted to remove
some of the directions in our feature space that did not seem
relevant to our identification problem. The results of the PCA
were actually quite interesting in that using the primary
components of only the images containing door handles actually
provided better results, on the order of 1 to 2%, on the test sets.
However, this seems intuitive in that we are primarily interested
in correctly identifying door handles and the non-door handle
images would clearly contain undesired principal components.
To select the optimal filter size when calculating the derived
features, i.e. the number of pixels from each image blended
together, as well as the optimal number of principal components,
an iterative algorithm was used to map out the entire
optimization space. The results are shown in Figure 1 and
Figure 2 below.

Figure 1. Max test set error vs. filtered/downscaled image size
(d) and # of principal components (k).

 2

Figure 2. Training set error vs. filtered/downscaled image size
(d) and # of principal components (k).

As highlighted by the above data, there is an optimal point with
an average error of ~4% where the over-fitting problem
disappears and the error is very close to its lowest observed
value. This point corresponds to blending the image down to 4
by 4 pixels using the previously mentioned filters then picking
the first 200 principal components of the resulting feature set.
The result of this was a classifier that, given a tightly-cropped
image, could identify whether it contained a door handle with >
~96% accuracy with the vast majority of the misclassifications
being false negatives.

To tackle the problem of identifying a door handle in a
panoramic image, the identification function sequentially steps
through the input image using a variable or fixed size frame that
is approximately the expected size of a door handle. The frame
size is generally chosen based on laser depth data. The RGB
image that is the content of the frame at each step is then passed
through the previously developed SVM classifier which
classifies the contents as either a door handle or not. This results
in a cloud of positive classification hits around each door handle
in the image where the centroid of each cloud is returned as a
single, confirmed door handle, as shown in Figure 3 below. In
the case of multiple clouds, the K-means algorithm is used to
calculate the centroid of each cloud.

Figure 3. Example of panoramic image parsing on STAIR robot
(Green dots = positive classification / Red dot = final output).

Using this particular algorithm, the identification function
achieved > ~99% accuracy at identifying a door handle/elevator
button in a scene. This accuracy was much higher than the
tightly-cropped image identification accuracy due to the
weighting of the false positives/negatives in the latter which,
when combined with the block parsing of the panoramic image,
consistently yielded large clouds only in regions containing an
actual door handle.

III. Classifying Door Handle Type

Once the robot has identified the location of the door handle in
an image, it needs to identify the handle type to know how to
manipulate it and open the door. The output from the door
handle identification algorithm is an image cropped around the
region containing the door handle. Because the size of the
cropped image output from the identification will be variable, it
is re-sized to a constant dimension using nearest neighbor
interpolation. For a first cut, several machine learning
algorithms were tested on an initial training set consisting of
only left and right turn handles. Approximately 120 training
samples were used. Each cropped image was re-sized to 25x25
pixels and the RGB pixel values were used as the features.
Logistic regression had a test error of approximately 20%.
Naïve Bayes had a test error of approximately 40%, and SVM
had the lowest test error, ranging between 5 and 10%.

The SVM algorithm appeared to give the best results for the
two-class training set, so we decided to move forward using this
algorithm. We used the SVM Multiclass open source software
package created by Thorsten Joachims, Cornell University [2].
SVM was implemented on a three-class training set consisting of
approximately 1200 images of elevator buttons and left / right
turn handles. Hold-out cross validation was used to compute the
average training and test errors. The SVM regularization
parameter was varied and the images were re-sized to different
values. An image size of 35x35 and a SVM regularization
parameter of 170 gave the lowest test error of 2.3%. Our goal
was to have classification accuracy of at least 98%. Also, the
training error was zero for any image size greater than 10x10.
This indicates over-fitting. Reducing the number of features by
decreasing the image size gave non-zero train error, but
increased the test error to 3.5%.

Based on the experiments, it appeared that improving the errors
would require a better and reduced set of features. First the
images are re-sized to 50x50; some example training samples
can be seen in Figure 4. The set of features were computed from

Figure 4: Example 50x50 training samples for door handle type
classification.

the pixel RGB values and are designed to capture three types of
local cues: texture variations, texture gradients, and color, by
convolving the image with 15 filters (9 Laws' masks and 6
oriented edge filters (Fig. 5). The image is segmented into 4x4

 3

patches of pixels and the filters are applied to all 3 color
channels for each of the patches for a total of 4x4x45 features
per patch. The features for the 4x4 patches are summed over the
entire image to give a total of 4x4x45 features per training
sample. PCA is then used to extract the most relevant features
from this set. The algorithm for feature extraction was provided
by Ashutosh Saxena. [3]

Figure 5: The filters used for computing texture variations and
gradients. The first 9 are Laws' masks, followed by the oriented
edge filters.

Finally, SVM is run on the reduced set of features to classify the
door handle as one of the three types. An exhaustive search was
used to determine the number of principal components to use as
well as what value to use for the SVM regularization parameter
to achieve the best accuracy. The SVM algorithm was run 5
times on each set of parameters using different train and test sets
to compute the average errors for each run and compute the
variance of the errors. Figures 6 and 7 show the results of the
training and test errors obtained for varying the number of
principal components (k) and the regularization parameter (C).
From the figures, we see that there are many values for these two
parameters that give test errors at or below 0.5%, with variance
of less than 0.3%.

Figure 6: Train error vs SVM regularization parameter (C) and
of principal components (k)

Figure 7: Test error vs SVM regularization parameter (C) and #
of principal components (k)

IV. Implementation on the STAIR Robot

The door handle identification and classification algorithms were
implemented on the Stanford AI Robot (STAIR 1) for the
purposes of making the robot physically open a door. This robot,
which has served as a test bed for multiple AI and computer
vision projects, is comprised of a Neuronics Robotics Katana 6-
DOF robotic arm, a Sony DVI-D100 PTZ camera, a URG
Hokuyo laser scanner, and a PC running Windows XP (see
Figure 8). The Katana robot arm comes equipped with inverse-
kinematic libraries to move the end-effector to a desired location
in the arm's reference frame. A user can also query the location
of the end-effector as well. The PTZ camera was capable of
taking 640-by-480 RGB images, and was mounted on a rail
above and behind the robot arm. The laser scanner was also
mounted on a rail behind the robot, about 1.6m above the
ground, and measured distance from itself to objects in its
horizontal plane. The accuracy of this laser scanner was
approximately 1cm in the range of distances (0.5m - 3m) at
which we were operating. The robot was built on a Segway
foundation whose motion was controlled using a Linux PC;
however, navigation of the robot itself was beyond the scope of
this project. The implementation of the machine learning
algorithms on STAIR proceeded in three steps. First, the camera
was calibrated and the distances between the camera, robotic
arm, and laser scanner were measured. Then, a function was
written to convert the (x,y) pixel location of the door handle into
3-dimensional coordinates in the robotic arm’s reference frame.
Finally, the robot arm was given commands to move to the door
handle’s location and open the door. Each of these steps is
described below.

 4

1

3
2

Figure 8: The Stanford AI Robot. Indicated are the robotic arm
(1), the PTZ camera (2), and the laser scanner (3).

After photographing 130 pictures of a checkerboard in various
orientations, the MATLAB Camera Calibration Toolbox [4] was
used to analyze those images and compute the intrinsic
parameters of the PTZ camera. With this information, one could
convert a pixel in an image into a ray emanating from the
camera's origin and passing through the pixel, expressed with
respect to the camera's reference frame. By measuring the
distances and angles between the camera's and robotic arm's
reference frames, we constructed transformation matrices to
express this ray in the robot arm's reference frame. (Initially, this
was performed with a simple measuring tape, but more
complicated refining procedures are described below.) By using
data gathered from the laser scanner, the distance from the robot
to the door could be determined, and the intersection of this
plane with the ray gave the location of the pixel in the arm's
reference frame.

In order to verify that the function which converts pixel values
into 3D coordinates was predicting reasonable 3D coordinates, a
test set was constructed. Each element of the test set was
comprised of an image of the robot end-effector and the
coordinates of the end-effector in the arm's frame as reported by
the arm. Because the laser scanner was mounted too high to
record the distance between itself and the robot arm, laser
scanner data was "faked" by using the actual coordinates of the
arm to calculate what distance the laser scanner would have
reported if it had been able to measure that distance. This had the
added benefit of removing the laser scanner's 1cm measurement
error from the verification procedure.

To get an initial guess for the distances and angles between the
camera, laser, and robotic arm reference frames, the distances
and angles were measured by hand with a measuring tape and
angles were calculated by moving the robot arm along known
horizontal paths and querying the arm's location. However, the
transformation matrices computed from these estimates
produced large (~20cm) error between the predicted points and

actual points in the verification test set. By physically
positioning the robot arm as close to the camera as possible, we
could query the robot arm's position to learn the approximate
location of camera's origin with respect to the arm. The same
technique was used on the laser, and these new values produced
error of ~12cm. In order to reduce the error further, the
MATLAB function "fminsearch" was used to search the space of
possible translation vectors and rotation angles between the
camera and arm to find the values that would minimize the sum
of the norms of the error between the predicted and actual
points. A regularization term was added to the cost function to
penalize the search algorithm for answers that were too far from
the measured points. Additionally, we further searched the
parameter space of translations and rotations around our guess
by writing a MATLAB GUI that would permit the user to click
in a series of 2D plots to specify pairs of parameters, and the
GUI would plot the predicted points and actual points. This
"point and click" method of user-driven parameter tuning
produced results that were similar to the results obtained from
using MATLAB's optimization function. The errors were driven
down to below 3cm in the horizontal directions and 6cm in the
vertical direction. Because there was no danger of damaging the
arm from error in the vertical direction, we tuned the parameters
to reduce the horizontal error at the cost of increasing slightly
the vertical error. Figure 9 shows the results of this parameter
tuning on the predicted points.

Figure 9: The test data we used to fine-tune the transformation
matrix parameters. Our initial measurements of the translations
and rotations between the robot frame and camera frame
produced transformation matrices which predicted the points
shown in red. After tuning the parameters, we predicted the
green points, which are much closer to the robot’s actual
position (black).

Once we had calculated the 3D point of the door handle, the
robot arm was driven to a point slightly above the door handle.
Then it executed the "door opening action:" it moved its gripper
straight down, pushing down the handle of the door. Because the
pixel returned by the identification algorithm was shifted to be
above the handle portion of the door handle, the gripper would
only engage with the door handle itself, and maintain a safe
distance from the pivot point.

 5

V. Results

When the entire system was tested with the robot in front of a
door, the robot was able to identify the door handle, correctly
classify it, find an appropriate point on the door handle to push
on, navigate to that point, and execute the door opening action
on the door handle. However, the pixel-to-arm-coordinate
transformation program required a large amount of parameter-
tuning before it was able to position the arm correctly. That is,
although the image processing algorithms correctly identified
and classified the door handle, the physical implementation
leaves something to be desired. Despite having tuned the
parameters to achieve acceptable levels of error in the test set of
images and gripper positions, we experienced a much higher
level of error when testing the robot on an actual door. This
suggests that, while the method for tuning the coordinate
transformation parameters to minimize the prediction error on
the image/gripper point pairs worked well, the test set did not
reflect how well the system would perform as a whole. Thus, it
would be desirable to construct a new test set of image/gripper
point pairs, this time using actual door handles and real laser
data. This would permit us to tune the parameters to perform
particularly well on the regions of the image known to contain
door handles.

VI. Future Work

There are several extensions we hope to add to this project. For
the door handle type classification, we would like to add more
types of door handles. Preliminary results have been obtained
with the addition of a spherical doorknob (for a total of four
classes). Using the exhaustive search to find the best values for
the SVM regularization parameter and number of principal
components, the test error is approximately 1.1% (with training
error of ~0.52%). Since the features of spherical doorknobs may
tend to look similar to round elevator buttons in a planar image,
it may take more clever features to increase the accuracy above
99%.

We also need to do much more testing with the robot on
different door handle types, especially types that the
identification/classification algorithms were not trained on.

Most of the error in experiment was due to the difficulty of
tuning the coordinate transformation parameters. One possible
area of future work would be to implement an online machine
learning algorithm to learn the parameters. Such an algorithm
would automatically move the arm to a known location, take a
picture of it, query the laser, and identify the gripper in the
image. With a large test set of this nature, one could implement a
simple learning algorithm such as weighted least-squares which
would map the pixel values and laser distances to the 3D robot
arm coordinates. Another option might be to employ a vision
feedback system for the robot arm positioning.

Acknowledgments

We’d like to thank the CS department AI lab and Professor
Andrew Ng for use of the STAIR robot. We’d also like to thank

the members of the AI lab, specifically Ashutosh Saxena,
Morgan Quigley, Brad Gulko, and Rangan Srinivasa, for their
help in implementing our software on the robot.

References

[1] http://svmlight.joachims.org/

[2] http://svmlight.joachims.org/svm_multiclass.html

[3] Ashutosh Saxena, Sung H. Chung, and Andrew Y. Ng.
Learning depth from single monocular images. In NIPS 18,
2006.

[4] http://www.vision.caltech.edu/bouguetj/calib_doc/

