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I. Introduction 
 
The area of robotic exploration is a field of growing interest and 
research in the robotics and computer science communities. 
Ideally, a human would send a robot into an area otherwise too 
dangerous for the human to enter, such as a smoke-filled 
building, a structurally-unsound bridge, or a radioactive area. 
Although robots already exist which can map a building's floor 
plan, they can only do so provided the doors are all open – a 
robot that can identify and open doors as it maps a building 
remains to be developed. 
 
The goal of this project was to use machine learning to enable a 
robot to identify the location of a door handle in an image, 
classify the door handle type, and finally open the door.  The 
data set considered consisted of three door handle types – left 
and right-turn handles and elevator buttons.  Several machine 
learning algorithms were implemented using a variety of 
different feature sets.  For both the identification and 
classification problems, the best results were achieved using a 
derived feature set with Principal Component Analysis (PCA) 
and the Support Vector Machine (SVM) algorithm. Accuracy for 
identifying a door handle in a scene was approximately 99%, 
and the accuracy for classifying the door handle type was 
approximately 99.5%.  The algorithms were demonstrated on the 
STanford Artificial Intelligence Robot (STAIR), which was able 
to successfully execute the motion of pushing down on a door 
handle to unlatch it. 
 
II. Identifying a Door Handle in a Panoramic Image 
 
In terms of developing the capability of identifying a single door 
handle in a tightly-cropped image, we have attempted 
implementing several different solutions before converging on 
the use of a binary classification SVM.  As an initial cut at the 
problem, logistic regression, naïve Bayes and SVM were 
implemented on a data set consisting of approximately 500 25 
by 25 images half of which depicted door handles with the rest 
consisting of other varied building scenery.  The pixel RGB 
values were used as the features.  The results were not very 
encouraging.  Naïve Bayes was clearly the most unsuitable 
algorithm with almost 50% error on most test sets.  In retrospect, 
this was to be expected as the Naïve Bayes assumptions on 
feature independence would obviously be invalid when applied 
to image pixels.  Logistic regression provided a starting test set 
error of approximately 25% to 30%, while the SVM’s test set 
error hovered around 15%.  Based on this initial round of tests, 
we decided to pursue the binary classification SVM in more 
depth.  Although multiple implementations of the SVM 
algorithm were assessed, the software ultimately used was SVM 
Light developed by Thorsten Joachims at Cornell University. [1] 
 
It should be noted that in all SVM training from this point 
onward, false positive errors were weighted much more heavily 
than false negative errors in order to eliminate as many of the 

spurious positive door handle identifications in a panoramic 
image as possible.  The first attempt at refining the SVM 
algorithm centered on varying the size of the input images and 
observing the effect on training/test set error with the pixel RGB 
values still being used as the features.  The image size was 
varied from 4 by 4 to 25 by 25 and the primary observation from 
this set of tests was that the training set error would generally be 
zero for all image sizes larger than 5 by 5 while the test set error 
would hover around a fixed mean of ~12% to 15%.  This seemed 
to indicate that our algorithms were over-fitting and that we 
needed to either get more training examples or use a better set of 
features.  We opted to use a set of derived features that were 
computed from the pixel RGB values and designed to capture 
three types of local cues: texture variations, texture gradients, 
and color, by convolving the image with 15 filters (same features 
used for classification, see Section III for a more detailed 
description), our test set error dropped slightly so that it now 
hovered around 9% to 12%.  However, even with the derived 
features, our training set error was still always zero so the over-
fitting problem seemed to persist. 
 
To attempt to overcome the over-fitting problem when using the 
derived features, we resorted to PCA and attempted to remove 
some of the directions in our feature space that did not seem 
relevant to our identification problem.  The results of the PCA 
were actually quite interesting in that using the primary 
components of only the images containing door handles actually 
provided better results, on the order of 1 to 2%, on the test sets.  
However, this seems intuitive in that we are primarily interested 
in correctly identifying door handles and the non-door handle 
images would clearly contain undesired principal components.  
To select the optimal filter size when calculating the derived 
features, i.e. the number of pixels from each image blended 
together, as well as the optimal number of principal components, 
an iterative algorithm was used to map out the entire 
optimization space.  The results are shown in Figure 1 and 
Figure 2 below. 

 
Figure 1.  Max test set error vs. filtered/downscaled image size 
(d) and # of principal components (k). 
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Figure 2.  Training set error vs. filtered/downscaled image size 
(d) and # of principal components (k). 
 
As highlighted by the above data, there is an optimal point with 
an average error of ~4% where the over-fitting problem 
disappears and the error is very close to its lowest observed 
value.  This point corresponds to blending the image down to 4 
by 4 pixels using the previously mentioned filters then picking 
the first 200 principal components of the resulting feature set.  
The result of this was a classifier that, given a tightly-cropped 
image, could identify whether it contained a door handle with > 
~96% accuracy with the vast majority of the misclassifications 
being false negatives. 
 
To tackle the problem of identifying a door handle in a 
panoramic image, the identification function sequentially steps 
through the input image using a variable or fixed size frame that 
is approximately the expected size of a door handle.  The frame 
size is generally chosen based on laser depth data.  The RGB 
image that is the content of the frame at each step is then passed 
through the previously developed SVM classifier which 
classifies the contents as either a door handle or not.  This results 
in a cloud of positive classification hits around each door handle 
in the image where the centroid of each cloud is returned as a 
single, confirmed door handle, as shown in Figure 3 below.  In 
the case of multiple clouds, the K-means algorithm is used to 
calculate the centroid of each cloud. 

 
Figure 3.  Example of panoramic image parsing on STAIR robot 
(Green dots = positive classification / Red dot = final output). 

 
Using this particular algorithm, the identification function 
achieved > ~99% accuracy at identifying a door handle/elevator 
button in a scene.  This accuracy was much higher than the 
tightly-cropped image identification accuracy due to the 
weighting of the false positives/negatives in the latter which, 
when combined with the block parsing of the panoramic image, 
consistently yielded large clouds only in regions containing an 
actual door handle. 
 
III. Classifying Door Handle Type 
 
Once the robot has identified the location of the door handle in 
an image, it needs to identify the handle type to know how to 
manipulate it and open the door.  The output from the door 
handle identification algorithm is an image cropped around the 
region containing the door handle.  Because the size of the 
cropped image output from the identification will be variable, it 
is re-sized to a constant dimension using nearest neighbor 
interpolation.  For a first cut, several machine learning 
algorithms were tested on an initial training set consisting of 
only left and right turn handles.  Approximately 120 training 
samples were used.  Each cropped image was re-sized to 25x25 
pixels and the RGB pixel values were used as the features.  
Logistic regression had a test error of approximately 20%.  
Naïve Bayes had a test error of approximately 40%, and SVM 
had the lowest test error, ranging between 5 and 10%. 
 
The SVM algorithm appeared to give the best results for the 
two-class training set, so we decided to move forward using this 
algorithm.  We used the SVM Multiclass open source software 
package created by Thorsten Joachims, Cornell University [2].  
SVM was implemented on a three-class training set consisting of 
approximately 1200 images of elevator buttons and left / right 
turn handles.  Hold-out cross validation was used to compute the 
average training and test errors.  The SVM regularization 
parameter was varied and the images were re-sized to different 
values.  An image size of 35x35 and a SVM regularization 
parameter of 170 gave the lowest test error of 2.3%.  Our goal 
was to have classification accuracy of at least 98%.  Also, the 
training error was zero for any image size greater than 10x10.  
This indicates over-fitting.  Reducing the number of features by 
decreasing the image size gave non-zero train error, but 
increased the test error to 3.5%. 
 
Based on the experiments, it appeared that improving the errors 
would require a better and reduced set of features.  First the 
images are re-sized to 50x50; some example training samples 
can be seen in Figure 4.  The set of features were computed from 
 

 
Figure 4: Example 50x50 training samples for door handle type 
classification. 
 
the pixel RGB values and are designed to capture three types of 
local cues: texture variations, texture gradients, and color, by 
convolving the image with 15 filters (9 Laws' masks and 6 
oriented edge filters (Fig. 5).  The image is segmented into 4x4 
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patches of pixels and the filters are applied to all 3 color 
channels for each of the patches for a total of 4x4x45 features 
per patch.  The features for the 4x4 patches are summed over the 
entire image to give a total of 4x4x45 features per training 
sample.  PCA is then used to extract the most relevant features 
from this set.  The algorithm for feature extraction was provided 
by Ashutosh Saxena. [3] 
 

 
Figure 5: The filters used for computing texture variations and 
gradients. The first 9 are Laws' masks, followed by the oriented 
edge filters. 
 
Finally, SVM is run on the reduced set of features to classify the 
door handle as one of the three types.  An exhaustive search was 
used to determine the number of principal components to use as 
well as what value to use for the SVM regularization parameter 
to achieve the best accuracy.  The SVM algorithm was run 5 
times on each set of parameters using different train and test sets 
to compute the average errors for each run and compute the 
variance of the errors.  Figures 6 and 7 show the results of the 
training and test errors obtained for varying the number of 
principal components (k) and the regularization parameter (C).  
From the figures, we see that there are many values for these two 
parameters that give test errors at or below 0.5%, with variance 
of less than 0.3%. 

 
Figure 6: Train error vs SVM regularization parameter (C) and 
# of principal components (k) 
 

 
Figure 7: Test error vs SVM regularization parameter (C) and # 
of principal components (k) 
 
IV. Implementation on the STAIR Robot 
 
The door handle identification and classification algorithms were 
implemented on the Stanford AI Robot (STAIR 1) for the 
purposes of making the robot physically open a door. This robot, 
which has served as a test bed for multiple AI and computer 
vision projects, is comprised of a Neuronics Robotics Katana 6-
DOF robotic arm, a Sony DVI-D100 PTZ camera, a URG 
Hokuyo laser scanner, and a PC running Windows XP (see 
Figure 8). The Katana robot arm comes equipped with inverse-
kinematic libraries to move the end-effector to a desired location 
in the arm's reference frame.  A user can also query the location 
of the end-effector as well. The PTZ camera was capable of 
taking 640-by-480 RGB images, and was mounted on a rail 
above and behind the robot arm. The laser scanner was also 
mounted on a rail behind the robot, about 1.6m above the 
ground, and measured distance from itself to objects in its 
horizontal plane. The accuracy of this laser scanner was 
approximately 1cm in the range of distances (0.5m - 3m) at 
which we were operating. The robot was built on a Segway 
foundation whose motion was controlled using a Linux PC; 
however, navigation of the robot itself was beyond the scope of 
this project. The implementation of the machine learning 
algorithms on STAIR proceeded in three steps. First, the camera 
was calibrated and the distances between the camera, robotic 
arm, and laser scanner were measured. Then, a function was 
written to convert the (x,y) pixel location of the door handle into 
3-dimensional coordinates in the robotic arm’s reference frame. 
Finally, the robot arm was given commands to move to the door 
handle’s location and open the door. Each of these steps is 
described below. 
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Figure 8: The Stanford AI Robot. Indicated are the robotic arm 
(1), the PTZ camera (2), and the laser scanner (3). 
 
After photographing 130 pictures of a checkerboard in various 
orientations, the MATLAB Camera Calibration Toolbox [4] was 
used to analyze those images and compute the intrinsic 
parameters of the PTZ camera. With this information, one could 
convert a pixel in an image into a ray emanating from the 
camera's origin and passing through the pixel, expressed with 
respect to the camera's reference frame. By measuring the 
distances and angles between the camera's and robotic arm's 
reference frames, we constructed transformation matrices to 
express this ray in the robot arm's reference frame. (Initially, this 
was performed with a simple measuring tape, but more 
complicated refining procedures are described below.) By using 
data gathered from the laser scanner, the distance from the robot 
to the door could be determined, and the intersection of this 
plane with the ray gave the location of the pixel in the arm's 
reference frame. 
 
In order to verify that the function which converts pixel values 
into 3D coordinates was predicting reasonable 3D coordinates, a 
test set was constructed. Each element of the test set was 
comprised of an image of the robot end-effector and the 
coordinates of the end-effector in the arm's frame as reported by 
the arm. Because the laser scanner was mounted too high to 
record the distance between itself and the robot arm, laser 
scanner data was "faked" by using the actual coordinates of the 
arm to calculate what distance the laser scanner would have 
reported if it had been able to measure that distance. This had the 
added benefit of removing the laser scanner's 1cm measurement 
error from the verification procedure. 
 
To get an initial guess for the distances and angles between the 
camera, laser, and robotic arm reference frames, the distances 
and angles were measured by hand with a measuring tape and 
angles were calculated by moving the robot arm along known 
horizontal paths and querying the arm's location. However, the 
transformation matrices computed from these estimates 
produced large (~20cm) error between the predicted points and 

actual points in the verification test set. By physically 
positioning the robot arm as close to the camera as possible, we 
could query the robot arm's position to learn the approximate 
location of camera's origin with respect to the arm. The same 
technique was used on the laser, and these new values produced 
error of ~12cm. In order to reduce the error further, the 
MATLAB function "fminsearch" was used to search the space of 
possible translation vectors and rotation angles between the 
camera and arm to find the values that would minimize the sum 
of the norms of the error between the predicted and actual 
points. A regularization term was added to the cost function to 
penalize the search algorithm for answers that were too far from 
the measured points. Additionally, we further searched the 
parameter space of translations and rotations around our guess 
by writing a MATLAB GUI that would permit the user to click 
in a series of 2D plots to specify pairs of parameters, and the 
GUI would plot the predicted points and actual points. This 
"point and click" method of user-driven parameter tuning 
produced results that were similar to the results obtained from 
using MATLAB's optimization function. The errors were driven 
down to below 3cm in the horizontal directions and 6cm in the 
vertical direction. Because there was no danger of damaging the 
arm from error in the vertical direction, we tuned the parameters 
to reduce the horizontal error at the cost of increasing slightly 
the vertical error. Figure 9 shows the results of this parameter 
tuning on the predicted points. 

 
Figure 9: The test data we used to fine-tune the transformation 
matrix parameters.  Our initial measurements of the translations 
and rotations between the robot frame and camera frame 
produced transformation matrices which predicted the points 
shown in red. After tuning the parameters, we predicted the 
green points, which are much closer to the robot’s actual 
position (black). 
 
Once we had calculated the 3D point of the door handle, the 
robot arm was driven to a point slightly above the door handle. 
Then it executed the "door opening action:" it moved its gripper 
straight down, pushing down the handle of the door. Because the 
pixel returned by the identification algorithm was shifted to be 
above the handle portion of the door handle, the gripper would 
only engage with the door handle itself, and maintain a safe 
distance from the pivot point. 
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V. Results 
 
When the entire system was tested with the robot in front of a 
door, the robot was able to identify the door handle, correctly 
classify it, find an appropriate point on the door handle to push 
on, navigate to that point, and execute the door opening action 
on the door handle. However, the pixel-to-arm-coordinate 
transformation program required a large amount of parameter-
tuning before it was able to position the arm correctly. That is, 
although the image processing algorithms correctly identified 
and classified the door handle, the physical implementation 
leaves something to be desired. Despite having tuned the 
parameters to achieve acceptable levels of error in the test set of 
images and gripper positions, we experienced a much higher 
level of error when testing the robot on an actual door. This 
suggests that, while the method for tuning the coordinate 
transformation parameters to minimize the prediction error on 
the image/gripper point pairs worked well, the test set did not 
reflect how well the system would perform as a whole. Thus, it 
would be desirable to construct a new test set of image/gripper 
point pairs, this time using actual door handles and real laser 
data. This would permit us to tune the parameters to perform 
particularly well on the regions of the image known to contain 
door handles. 
 
VI. Future Work 
 
There are several extensions we hope to add to this project.  For 
the door handle type classification, we would like to add more 
types of door handles.  Preliminary results have been obtained 
with the addition of a spherical doorknob (for a total of four 
classes).  Using the exhaustive search to find the best values for 
the SVM regularization parameter and number of principal 
components, the test error is approximately 1.1% (with training 
error of ~0.52%).  Since the features of spherical doorknobs may 
tend to look similar to round elevator buttons in a planar image, 
it may take more clever features to increase the accuracy above 
99%. 
 
We also need to do much more testing with the robot on 
different door handle types, especially types that the 
identification/classification algorithms were not trained on. 
 
Most of the error in experiment was due to the difficulty of 
tuning the coordinate transformation parameters.  One possible 
area of future work would be to implement an online machine 
learning algorithm to learn the parameters.  Such an algorithm 
would automatically move the arm to a known location, take a 
picture of it, query the laser, and identify the gripper in the 
image. With a large test set of this nature, one could implement a 
simple learning algorithm such as weighted least-squares which 
would map the pixel values and laser distances to the 3D robot 
arm coordinates. Another option might be to employ a vision 
feedback system for the robot arm positioning. 
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