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ABSTRACT
Learning 3-D scene structure from a single still image
has become a hot research topic recently, during which
edges played a very important role as they provided
critical information about the structures. While not all
the intensity edges are useful, existing 3-D reconstruc-
tion methods suffered heavily when not differentiating
structural edges with non-structural ones. In this re-
port, we consider learning structural edges rather than
edges from intensity values of the image. Through su-
pervised learning, the learnt edges as shown in this re-
port carries more stuctural information and less noise
than intensity edges. The comparison of two kinds of
edges are also shown in the report.

1. INTRODUCTION

Classical work on 3-D reconstruction mainly focus on
using methods like stereovision [3] and structure from
motion [4], which requires two (or more) images and
triangulation for depth estimation. Recently, monoc-
ular vision has arouse interests of many researchers,
since there are numerous monocular cues that could
be utilized when estimating the depth. An good exam-
ple of analogy is the human eyes. Even when using
only one eye, people can always have a very good es-
timate the relative depth about the scene. Saxena et al.
[1] proposed a method to estimate the 3-D depth infor-
mation from a single still image. Their proposed ap-
proach took an image over-segmemted into a number
of small planes called superpixels, and used Markov
Random Field (MRF) to infer both the 3-D position
and the orientation of each of these small planes. The
MRF parameters were trained using supervised learn-
ing. Their algorithm was able to infer qualititively cor-
rect and visually pleasing 3-D models automatically

for about65% of the testing set. However, their meth-
ods suffered from not differentiating structural edges
for non-structural ones, since not all the intensity edges
carried useful information about the structured scene.
For the small planes, edges are very useful in estimat-
ing the connectedness of those planes. Without the
correct structural edges detected, visually far apart ob-
jects could be connected together by the MRF. Thus,
it is imperative to develop an algorithm to learn struc-
tural edges to improve the performance of the their
system.
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Fig. 1. Comparison of edges. (a) Original image;
(b) Edge after manually merging connected parts; (c)
Edge by Canny’s method.

In this report, we proposed a supervised learning
algorithm to learn the structural edge from non-structural
ones. For each image in the training set, Felzenszwalb’s
method [5] was used to group similar pixels together
to get superpixels. Texture-based summary statistic
features, and superpixel shape and location based fea-
tures were then extracted from each superpixels in the
image. By manually labeling connected objects, su-
perpixels representing connected objects are merged
together and the structural edges are at the boundary
of the superpixels representing disconnected objects.
Through our labeling, structural edges are differen-
tiated from non-structural ones. Logistic regression
parameters were afterwards trained using the labeled



structural and non-structural edges. As can be seen
from our testing sets, our proposed method success-
fully inferred edges with more structural information
than the intensity edges as well as less noise.

The rest of the report is organized as follows. In
Section 2, our proposed models and the feature filters
will be described. The experimental results are shown
in Section 3. In addition, some discussion and the con-
clusion will be presented in Section 4

2. MODEL DESCRIPTION

2.1. 3-D Scene Reconstruction Model

Since the features extracted has a strong connection
with Ashutosh’s 3-D reconstruction model [1, 2], a
brief introduction of his model will be first described.
In [1], a polygonal mesh is used to represent the 3-D
model, where the world is assumed to be composed
of a set of small planes. In detail, given an image of
scene, small homogeneous regines were found in the
image, by using Felzenszwalb’s method [5]. Those
small regines are called “Superpixels”. Such regions
represent a coherent region in the scene with all the
pixels having similiar properties, and hence is a rea-
sonable representation. Markov Random Field (MRF)
are then used to infer both the 3-d position and orienta-
tion information of the superpixels. Thus, each node in
the MRF is correponding to a superpixel in the image.
The MRF model is supposed to capture the following
properties:

• Image Features and Depth: the image features
of a superpixel bear some relation to the depth(and
orientation) of the superpixel.

• Connected Structure: Except in case of occlu-
sion, neighboring superpixels are more likely to
be connected together.

• Co-planar Stucture: Neighboring superpixels
are more likely to belong to the same plane, if
they have similiar features and if there are no
edges between them.

• Co-linearity: Long straight lines in the image
are more likely to be straight lines in the 3-D
model. For example, edges of buildings, side-
walk, windows, etc.

None of these properties individually can determine
the 3-D structure of the scene. Thus, when combining

them togeter, ’confidence factor’ needs to be set up for
them in the MRF. As can be imagined, edgels (edges
between two neighboring superpixels) are a good way
to express the confidence on the connectedness and the
co-planarity of two adjacent superpixels.

2.2. Learning Model

It can be easily seen that edgels are very useful in-
dicators of the occlusion boundaries and folds (places
where two planes are connectedby no co-planar). When
there is an edge, the two neighboring superpixels are
more likely to be either belong to two diferent ob-
jects distant from each other, which corresponds to an
occlusion, or belong to two parts of a single object,
which is a possible fold. Hereafter, we will useyij

to indicate the binary edge value between superpixel
si andsj . Then we haveyij ∈ {0, 1}. Specifically,
we setyij = 0 to be the edge, which doesn’t conform
with the conventional setting, simply because we want
the largeryij values represent the higher confidence
of the connectedness or co-planarity of two adjacent
superpixels.

Let the features extracted from the image for each
pair of neighboring superpixels bexij (the extraction
of features are dicussed in Section 2.3). We can then
model the response betweenyij andxij as a logistic
function,

P (yij |xij ;φ) =
1

1 + exp(−φT xij)
, (1)

To obtain theyij ’s for each pairsi andsj of the su-
perpixels, images were first manually labeled to con-
nect those superpixel that are visually connected to-
gether. By this means, part of the superpixels detected
automatically are merged together. Fig. 1 showed
an example of the manually labeled edge image as
compared with the automatically detected edge using
Canny’s method [6].

As can be seen, in our special problem, the edge
shown as Fig. 1 (b) looks more reasonable as it con-
forms with the 3-D spatial structure of the scene, which
is our goal for the edge learning.

2.3. Features

For each superpixel, a number of features are com-
puted to capture the monocular cues that is useful to in-
fer the edges. For each superpixel at locationi, texture-
based summary statistic features, and superpixel shape



Fig. 2. The convolution filters used for texture ener-
gies and gradients. Teh first 9 are3 × 3 Law’s masks.
The last 6 are the oriented edge detectors at30◦. The
nine Law’s masks do local , edge detection and spot
detection. The 15 Law’s mask were applied to the Y
channel of the image. Only the first averaging filter
to the color channels Cb and Cr were applied; thus 17
filter reponses were obtained. As both of energy and
kurtosis were calculated, totally 34 features were ob-
tained for each patch.

and location based features are computed. Particularly,
the features are computed as the output of each of the
17 (9 Laws masks, 2 color channels in YCbCr space
and 6 oriented edges, see Fig. 2) filters. As the struc-
tural edge is a characterization of the two adjacent su-
perpixels, the 34 features for each of the two superpix-
els are combined together to have a totally 68 features.

3. EXPERIMENTAL RESULTS

Our experiment was done on a desktop with AMD
Athlon ×2 2.0GHz CPU and 4GB Memory. In the
experiment, 15 images from the database are first man-
ually labeled by the tools provided by
http://make3d.stanford.edu/scribble/index/###,
where### are the image number in the database.
Considering the vertical difference in terms of the cato-
gories of normally seen objects within an image, for
example, normally the ground is at the bottom part of
the image and the sky is at the top, we separate the
image vertically into 11 rows as the features in differ-
ent vertical rows are supposed to be different. Logistic
regression is then applied to each row such that the pa-
rameters trained are for each row only.

In addition, to reduce the redundancy of the fea-
tures, PCA with 0.99 of total variance preserved was
applied to the feature vectors before the logistic regres-
sion. A comparison of the training error with PCA ap-
plied and with it not applied for each row is shown in
Fig. 3.

As can be seen the error rates for both methods are
roughly the same, the training time differed quite a lot
as shown in Table 1. Thus, the method with PCA is
prefered.
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Fig. 3. Error rate of each row (R1-R11) for logistic
regression with PCA (red) and without PCA (blue).

Logistic Logistic with
PCA (0.99)

Average
Training Time 4.61s 0.61s

Table 1. Total training time for logistic regression
with and without PCA.

To test our proposed method on unseen images, a
Leave-One-Out cross validation (LOOCV) is done on
all the 15 labeled images. The averaged testing error
compared with the training error for the logistic regres-
sion with PCA applied are reported in Fig. 4.
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Fig. 4. Training error vs LOOCV testing error for lo-
gistic regression with PCA applied.

As expected, the testing error is a little larger than
the training error, however comparable, which thus con-
solidates our previous assertion that the use of PCA
prior to logistic regression is a reasonable choice.

Shown below in Fig. 6 are some of the learnt struc-
tural edges from the cross validation. As can be seen,



the learnt edges improved from the edges from super-
pixels by emphasizing on the edgels with more struc-
tural information.

4. DISCUSSION AND CONCLUSION

Logistic regression is by no means the only choice,
experiments also done using Support Vector Machines
(SVM) with Radial Basis Function (RBF) kernels. The
comparison of the training error is shown in Fig. 5.
As can be seen, SVM+ RBF method improved the
training error a little bit, the reason we didn’t choose
this method is because of the long training error. In
our experiment, training of 15 images using SVM+
RBF took around a whole day on the same computer.
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Fig. 5. Training error for SVM+ RBF and logistic
regression both with PCA applied.
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Fig. 6. Comparison of edges. (a) Original images; (b) Learnt structural edges; (c) Edges from superpixels.


