
FORECASTING PURCHASING BEHAVIOR USING FMRI DATALOGAN GROSENICKAbstractDespite growing interest in applying machine learning to neuroimaging data, fewstudies have gone beyond classifying sensory input to using brain data to forecastbehavioral output. With spatial resolution on the order of millimeters and temporalresolution on the order of seconds, functional magnetic resonance imaging (fMRI)is a promising candidate for such applications. However, fMRI data's low signal-to-noise ratio, high dimensionality, and extensive spatiotemporal correlations presentformidable analytic challenges. Here, we apply Penalized Discriminant Analysis toa previously-acquired data [12] to investigate using fMRI activation in three regions� the nucleus accumbens (NAcc), medial prefrontal cortex (MPFC), and insula � toforecast purchasing behavior and generate an interpretable spatiotemporal model.1. IntroductionEvent-related functional magnetic resonance imaging (fMRI) has revolutionizedcognitive neuroscience. Currently, among neuroimaging techniques, only fMRI al-lows investigators to visualize changes in subcortical activity at a temporal resolu-tion of seconds and a spatial resolution of millimeters [10]. With fMRI, investigatorsvisualize changes in vascular oxygenation (hereafter, �activation�) that occur 4-6safter changes in neural activity. This activation correlates closely with postsynapticchanges in dendritic potentials [15]. Although the fMRI signal lags behind thesepostsynaptic changes, the lag can be modeled and deconvolved, allowing second-to-second temporal inference. Nonetheless, many fMRI methods have only recentlyadapted to take advantage of this greater temporal speci�city.Traditionally, subcortical circuits have been of great interest to a�ective neu-roscientists, since appetitive and aversive behavior can be unconditionally elicitedfrom subcortical regions via electrical stimulation [16]. A little more than a decadeof fMRI research has begun to validate some of these �ndings in humans, suggest-ing that a subcortical circuit including the nucleus accumbens (NAcc) plays a rolein anticipation of gains, while a circuit including the deep cortical region of theinsula plays a role in anticipation of loss [14]. Additionally, a region in the mesialprefrontal cortex (MPFC) appears to play a role in correcting erroneous gain pre-dictions [11]. Together, these �ndings implicate these ancient parts of the brain inthe representation of expected value and related choice [13].The ability to visualize anticipatory activation allows a reversal of the tradi-tional logic of neuroimaging design and analysis. Instead of examining how sensoryinput in�uences brain activation, investigators have the potential to examine howbrain activation in�uences subsequent motor output. The goal of this work wasto advance single-trial fMRI forecasting of purchasing behavior by simultaneouslyyielding good classi�cation rates and interpretable coe�cients in space and time.1



FORECASTING PURCHASING BEHAVIOR USING FMRI DATA 2We reanalyzed previously collected data using set of penalized discriminant analysis(PDA) [8] models that both constrain correlated coe�cients and perform automaticvariable selection (PDA-ENET). We compared classi�cation rates and model coef-�cients from these models against those obtained via logistic regression (LR), lineardiscriminant anlysis (LDA), and linear support-vector machine (SVM).2. DataDuring scanning, 25 subjects participated in a "Save Holdings Or Purchase"(SHOP) Task. In each of 80 task trials, subjects saw a labeled product (productperiod; 4 sec), saw the product's price (price period; 4 sec), and then chose either topurchase the product or not (by selecting either "yes" or "no" presented randomlyon the right or left side of the screen; choice period; 4 sec), before �xating on acrosshair (2 sec) prior to the onset of the next trial. Subjects chose from 40 itemstwice and then chose from a second set of 40 items twice (two presentations of 80unique items total), with each set in the same pseudorandom order, to examine thee�ects of item repetition (item sets were counterbalanced across subjects). For moredetails on data collection and preprocessing see [12]. For spatiotemporal analysis,we de�ned a N × p data matrix X with N corresponding to the number of trialobservations of the p input variables, each of which was a particular voxel from anROI at a particular time point. This resulted in a total of 414 input variables pertrial � augmented to 438 input variables with �xed e�ects.3. Penalized Discriminant AnalysisVoxel-wise fMRI data has high dimensionality and strong correlations betweencontiguous measurements in space and time. Application of standard Logistic Re-gression (LR) or Linear Discriminant Analysis (LDA) to fMRI data thus su�er frompoor or degenerate covariance matrix estimates, which can limit model generaliz-ability to new data and limit coe�cient interpretability [8]. Appropriate penal-ization of the covariance matrix, however, can improve generalizability and yieldinterpretable models [4, 7, 8]. Further, automatic variable selection is desirablegiven the large number of correlated input variables. Such variable selection shouldaid in both interpretation and in the model's generalization to new data. Mod-ern regression tools exist for both penalizing and performing automatic variablesselection, but we must modify them to perform binary classi�cation.The 'Optimal Scoring' (OS) procedure [7, 8] modi�es a regression model (withcontinuous-valued outputs) so that it can classify a vector of categorical outputs gby simultaneously optimizing over a function θ(g) : g 7→ R. We may then write ourpenalized regression coe�cient estimates in 'Lagrangian' form as:(3.1) β̂ = argmin
θ,β

||θ(g) − XT β||22 + λJ(β)subject to N−1||θ(g)||22 = 1, where θ(g) is a real-valued vector, XT is the transposeof our input matrix, β is the vector of coe�cients, the function J(β) is a penaltyfunction in terms of β, λ is a penalty parameter, and || · ||22 is the L2 norm.One natural choice for our regression method in our PDA is the LASSO [17],which uses J(β) = ||β||1 in equation (3.1), where || · ||1 is the L1 norm. When thenumber of non-zero coe�cients in the model is expected to be sparse (≤ N for p >>

N), the LASSO [17] is attractive because it performs variable subset selection andis easily computed using the LARS algorithm [2].



FORECASTING PURCHASING BEHAVIOR USING FMRI DATA 3Although the LASSO performs well in variable selection and prediction, it alsohas limitations, particularly in the case of correlated input variables or when N < p.Speci�cally, the LASSO can select at most N variables when N < p, and is not well-de�ned unless the L1-norm of the coe�cients is below a certain value [19]. Given agroup of highly correlated input variables, the LASSO is likely to randomly selectjust one variable from the group, generating unstable results over multiple �ts andfailing to capture correlated groups of relevant variables [19]. It's performance alsosu�ers given correlated inputs, for instance, ridge regression empirically dominatesthe LASSO even in typical N > p regression settings with correlated inputs [17].Further, LASSO loses it's desirable 'oracle properties' [3] given grouped inputs [18].A generalization of the LASSO called the elastic net (ENET) addresses thegrouped variable problem by implementing a hybrid penalty with both ridge andLASSO properties [19]. ENET coe�cient estimates are given by:(3.2) β̂ENET =
√

(1 + λ2) argmin
β

||y − XT β||22 + λ1||β||1 + λ2||β||22which � as detailed in [19] Theorem 2 � can be rewritten as:(3.3) β̂ENET = arg min
β

β̂T

(

XTX + λ2I√
1 + λ2

)

β − 2yTXβ + λ1||β||1where standard LASSO estimates obtain when λ2 = 0:(3.4) β̂LASSO = argmin
β

β̂T
(

XTX
)

β − 2yT Xβ + λ1||β||1Thus ENET is like a stabilized version of the LASSO, with the estimate covariancematrix Σ̂ = XT X shrunk towards the p × p identity matrix I as λ2 increases [19].Conversely, letting λ2 → +∞, results in a special case of ENET called "Univari-ate Soft Thresholding" (UST) [1]:(3.5) β̂UST = argmin
β

β̂T β − 2yTXβ + λ1||β||1which can be equivalently written as:(3.6) β̂j

UST
=

(

|xT
j y| − λ1

2

)

+

sign (

xT
j y

)for j ∈ {1, ..., p}. These estimates are of particular interest in the case of fMRIanalysis, as they are equivalent to a thresholded mass-univariate GLMmap [5]. Thisprovides a direct bridge between the coe�cients for the family of ENET methodsand �statistical parametric maps� popular in fMRI analyses.Inputs were centered and standardized to have equal variance and an interceptof zero. To �t the PDA and SVM models, we used the freely available Elastic Netand SVMPATH packages in R [9, 19]. The Elastic Net package uses the EN-LARSalgorithm which �ts the entire λ1-regularization path in about the time requiredfor an OLS �t. We �t models for each value of λ2 ∈ {0, 0.0001, ..., 1000, 10000}.The EN-LARS algorithm allowed easy �tting of all models over a 5-fold internalcross-validation to estimate values for (λ1, λ2). Each of these 5 internal cross-validations was nested within the training set of a larger 5-fold cross validationused to estimate out-of-sample error rate with the estimates of (λ1, λ2) chosen viainternal cross-validation. Logistic Regression (LR) and LDA were run in MATLAB.
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4. Results and DiscussionSix classi�ers (LR, LDA, linSVM, and 3 PDA models) were applied to the data,yielding the held-out test rates and associated binomial p-values shown in Table 1.All models classi�ed above chance for the combined data and the 1st presentationdata (p < .01). The PDAmodels (but not the others) also classi�ed above chance forthe 2nd presentation data. Of the PDA models, t-tests showed that the PDA-ENEThad signi�cantly higher rates than LDA on all three datas (p < 0.05). Additionally,PDA-LASSO and PDA-UST had signi�cantly higher rates than LDA on the 2ndpresentation data (p < 0.05), and PDA-LASSO had higher rates than LDA on the1st presentation data. There were no signi�cant di�erences between rates for LDAand either SVM or LR on any data. Rates were signi�cantly higher for the 1stversus the 2nd presentation data across all six models.PDA-ENET was freely optimized over the λ2 parameter, which could take op-timal solution values ranging from λ2 = 0 (PDA-LASSO solution) to λ2 = 10000(the approximate PDA-UST solution). Since the values for λ2 chosen via 5-foldCV for all three datas were close to λ2 = 1, the optimized PDA-ENET solutionappeared to balance characteristics of both PDA-LASSO and PDA-UST models.Critically, in addition to yielding the best classi�cation rates to date for suchdata, the PDA models also increased coe�cient interpretability. The PDA modelsused here automatically selected a set of spatiotemporal inputs for classi�cation,zeroing the coe�cients of remaining inputs. Comparison models (i.e., LR, LDA,SVM) did not perform automatic variable selection and so assigned non-zero coef-�cients to all spatiotemporal inputs. This, and the lack of regularization in the LRand LDA case, made the LR, LDA, and linSVM coe�cients quite uninterpretable.For purposes of interpretation, we plotted the PDA model coe�cients as heatmaps organized spatially by region and temporally by time point in each trial(Figure 1). Below each heat map, average values within each region are plottedover time. Product, Price, and Purchase periods are also diagrammed.For the �rst presentation data, all PDA models showed a strong contribution ofthe left NAcc starting during product presentation and continuing through price
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presentation. The right NAcc contributed more during price presentation. TheMPFC's bilateral contribution was strongest during price presentation and the leftMPFC continued to contribute during the choice period. While all PDA modelsshowed similar NAcc and MPFC contributions, the insula contribution varied acrossmodels. Speci�cally, the insula's contribution was clearest during the price periodin the PDA-LASSO model but no longer evident in the PDA-UST model. Sinceinsula contributions were most apparent in PDA-LASSO and PDA-ENET models,they may have resulted from interactions with other input variables (see also [6]).All PDA models �t to the second presentation data indicate that the regionsof interest contributed di�erently in this model than they did in the model �t tothe �rst presentation data. The insula contributed more robustly � both in theprice and choice periods � across all three models, seemingly independent of thecontributions of other inputs. In contrast, NAcc and MPFC contributions wereweaker and less coherent in space and time than for the �rst presentation data.These �ndings suggest that initial purchasing decisions may utilize di�erent neuralcircuits than repeated purchasing decisions. Further, they show that PDA-ENET isa viable option for single-trial based forecasting of purchasing behavior, and yieldsinterpretable coe�cients in space and time.
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