
Facebook Friend Suggestion
Eytan Daniyalzade and Tim Lipus

1. Introduction
Facebook is a social networking website with an open platform that enables developers to extract and

utilize user information and relationships. Our goal was to create a "friendship model" to be used for the
following purposes:

1) Recommend a new friend to a user given the user’s existing friends.
2) Given a user’s friends, determine which of those friends would be users’ “best friends.”
To make these predictions, we gathered user profile information such friends, groups, interests,

music, and activities. We trained our models based on these features using techniques from both
supervised and unsupervised learning. For the first goal, we implemented logistic regression and Naïve
Bayes learning algorithms to predict which users are most likely to be friends. For the second task, we
used PCA and K-means clustering to compare a given user’s friends to each other.

It is highly likely that the friendship structure of a certain person would be very different than that of
another person. Furthermore, there is a large variation among the profile information of different people
(e.g. we will not necessarily have the same features for each person, and the relative importance of
features may be different for different users). Therefore, we decided to train our hypothesis separately for
every person whose friends we would try to understand. We use the term “central user” to denote the user
for whom we are training the algorithm. Instead of defining features for individual users, we defined the
features for each sample as a function of a central user and the sample we are comparing against. For
example, a feature would not be the number of friends of a user, but rather the number of friends a user
has in common with the central user.

2. Data Acquisition
We used the Facebook API to collect user data. Data collection steps were as follows: choose central

users, find their friends (positive samples), choose a set of non-friends (negative samples), and gather
profile information for every positive and negative sample with respect to the central user.

Limitations of the API and privacy settings created some obstacles in data collection. First, some
profiles allow only limited access, which in some cases makes it impossible to see any data other than the
name of the user. For this reason, we limited ourselves to profiles within the Stanford network, since most
non-Stanford profiles allow us very little access. Second, it is not possible to directly query for all of a
given user’s friends. One can only query whether two particular users are friends. Therefore, we needed
to start with a large set of user ids, and it was not possible to find all the friends of a user unless our
starting set contained all of them. The third problem was the lack of an easy way to get a list of users
according to arbitrary criteria (such as Stanford students). We had to collect data in a less direct way; we
started with a Stanford student-group, found all the Stanford students in that group, then found other
groups to which those users belong, and repeated until we had around 4000 samples. It is possible that
this method could have introduced some bias into our data set that could have been avoided had it been
possible to select 4000 random Stanford users.

Because a given user’s friends make up a small percentage of our network, we chose to include in our
training and test sets all of the central user’s friends (that we found in our set of users) and up to 200 non-
friends. We made this choice to include as much information about friends as possible, but we also had to
keep in mind the implications of having a training set with a different distribution than the overall data,
which we discuss in more detail below.

3. Model Evaluation
One of the major challenges of this project was determining how to evaluate our models. One reason

this is difficult is that although the models we used for friend suggestion are typically used for
classification, our application is not quite classification. Rather than outputting y=1 (friend) or y=0 (non-

friend) for each candidate user, we instead want to select the most likely candidates out of a given pool.
Therefore, measuring test error is not as simple as finding the percentage of misclassifications on a test
set. One property that an error metric should have is a higher emphasis on precision than recall; we do not
need to return all likely candidates, but we want the ones we return to be good.

A second problem with the friend suggestion task is that what we are testing is not quite the same as
the goal we are trying to accomplish. Our goal is to create an application that suggests new friends that
are not already the central user’s friends, but we are testing the ability of the model to predict whether a
given user is already friends with the central user. Accurately testing the first goal would require a large
set of hand-labeled data; we decided it would be better to use the large amount of already existing data as
a proxy. For the second task of determining a central user’s closest friends, we do not have any labeled
training data at all, so it is difficult to make a precise evaluation of our model’s performance.

4. Friend Recommendation using Logistic Regression
We trained a linear logistic classifier to classify non-labeled samples as friends or non-friends.

Initially, we used a training set of 50 non-friends and approximately 30 friends for each user. For finding
the optimal classifier, we preferred Newton’s Method due to its rapid convergence and the non-singularity
of our feature set. Features used were the ones mentioned above, i.e. number of common friends, groups,
activities etc. We used K-Fold Cross Validation (with K=10) to find our test error. Accuracy rates on our
first run were highly satisfactory given the acceptable level of accuracy for our application. Classification
error was on average between 15% and 20%. The test error rate increased as we increased the number of
features included, despite the fact that each feature was individually a decent friendship indicator. Figure
1 shows how testing error varied with increasing number of training samples, and different graphs shows
error rates for different number of features included.

40 50 60 70
10

12

14

16

18

20

22

24

Number of Training Samples

P
e
rc

e
n
t

E
rr

o
r

Logistic Regression with 2 Features

Training Error
Test Error

40 50 60 70
12

14

16

18

20

22

24

Number of Training Samples

P
e
rc

e
n
t

E
rr

o
r

Logistic Regression with 4 Features

Training Error
Test Error

40 50 60 70
5

10

15

20

25

30

Number of Training Samples

P
er

ce
nt

 E
rr

or
Logistic Regression with 6 Features

Training Error
Test Error

As seen in the plots, training error was significantly less than test error with higher number of
features. Further, test error declined with increasing number of training samples. We interpreted these
results as indicators of high variance and acquired more data to increase our training set to 200 non-
friends and around 60 friends. Expanding our training set significantly improved our results, lowering
error rates to 12%, 11% and 10% for 2, 4 and 6 features respectively.
4.1 Weighted Logistic Regression

Basic logistic regression’s main drawback is that it punishes false negatives the same as false
positives. However, since our application would only be reporting the samples that it would classify as
positive, we should lower error on positive guesses as much as possible. This could be achieved by
weighing negative samples more than positive samples while training. This approach would put more
emphasis on maximizing the likelihood of negative samples and shift the separating line closer to positive
samples, making our hypothesis less likely to guess positive samples. As seen in Figure 2, as the weight
assigned to negative samples increased, the percentage error on positively guessed samples (i.e.
mislabeling of negative data) and the number of positive guesses decreased.

Figure 1 Data reduced to 2-Dimensions for
Visualization

0 5 10 15
0

10

20

Negative Sample Weight

%
E

rr
or

Error on Negative Samples

0 5 10 15
5

10

15

20

Negative Sample Weight

N
um

be
r

of
 G

ue
ss

es

Number of Positive Guesses

0 5 10 15
10

15

20

Negative Sample Weight

%
E

rr
or

Total Error
n=2,friends
n=4,..&groups
n=6,..&events

4.2 Conclusions on Logistic Regression
A major challenge is figuring out the optimal weight on the negative samples. We deferred tackling

this issue until we gathered sufficient user feedback to decide whether the number of recommendations or
their accuracy is a bigger priority.

5. Naïve Bayes
We also trained a NB model based on features that each person might have in common with the

central user. We trained both a Bernoulli and a multinomial model. In the Bernoulli model, for a given
feature of a user (e.g., groups), we let P(xi = 1|y) be the probability that the user’s ith group was also
shared by the central user. However, we considered the possibility that some groups might be more
indicative than others. Therefore, we also created a lexicon of the groups to which the central user
belongs and trained a multinomial model in which we let P(xi = j|y) be the probability that the user’s ith

group was the same as the central user’s jth group. If j = 0, then it is the probability that the user’s ith group
is not shared by the central user. (Note that the multinomial model distinguishes between each group to
which the central user belongs, but groups to which he does not belong are treated symmetrically.)
5.1 Modeling the Prior

One difficulty in applying NB is modeling the prior P(y=1). We would normally set this parameter to
be the percentage of the training examples which were positive, but as discussed above, our training set is
not representative of the actual distribution. Furthermore, even if we base our prior on all of the data (not
just the data in the training set), it may not match the prior for the question we are actually trying to
answer; the probability that given user is friends with the central user may be different than the
probability that a given non-friend is someone with whom the central user might like to be friends.

However, the nature of our goal allows us to solve this problem. As mentioned above, instead of
performing classification, we instead want to select the most likely candidates. Therefore, we rank the
users by the likelihood ratio P(x|y=1)/P(x|y=0), which is equivalent to ranking by P(y=1|x). This way, we
can avoid modeling the prior.
5.2 Measuring Accuracy

Unfortunately, as mentioned above, this application of Naïve Bayes makes measuring the test error
difficult. A simple method would be to let F be the number of friends in the test set, rank the test set by
the likelihood ratio, and let the error be equal to the percentage of users in the top F scores that were
actually non-friends. This metric (which we call metric A) has the advantage of focusing on false
positives. However, in practice, we would probably only report the top few candidates, so we care the
most about the ones at the top. Therefore, we also used metric B, which awards a higher weight to the test
samples that the model ranks higher; specifically, wi = F+1–i (with weights renormalized to sum to 1).
We also let metric C be the same as A, but with F/2 in place of F.

The following plots show the test results for our model, where each column shows the test samples
for a single central user. Friends are shown in blue, non-friends in red. We found the best model (Figure
3-b) to be the one that treats common friends by a multinomial model and other features as a Bernoulli
model. For comparison, the model with all features treated as Bernoulli is shown in Figure 3-a. The error
according to each of the three metrics is given as well.

Figure 2

 Figure 3-a A = 24.5% B = 12.2% B = 7.33% Figure 3-b A = 20.7% B = 11.2% C = 7.65%

6. Unsupervised and Semi-Supervised Learning for Best Friend Suggestion
The goal here is to cluster a user’s friends based on their similarity, and report the members of the

group closest to the user as the “best friends.”
6.1. Reduction to a Single Dimension using PCA

An obvious challenge in unsupervised learning is defining a metric that determines the cluster to
report. We tackled this issue by assuming that features were positively correlated with friendship level.
To test this assumption, we created a feature set consisting of our friends and reduced the data to a single
dimension by applying PCA. This single dimension, the principal eigenvector, indicates the direction of
highest variation; hence, we postulated that the projection of the better friends would lie further away
from the origin, indicating a higher number of common features. Using ourselves as the central user, this
metric correctly identified the people we would consider as good friends. Although we could not prove
results rigorously, this experiment indicated that projecting on the principal component could indicate
level of friendship.
6.2. K-Means Clustering

We clustered our data into four clusters (the number of clusters was arbitrarily decided) using the 8-
dimensional feature set and reported a cluster based on our metric of closeness to the central user. Figure
4-a shows the results. It is noteworthy that we applied clustering in higher-dimensional space, rather than
reducing data to a lower dimensional space and then reporting points based on their distance from the
origin. The two methods would cluster points in similar but not identical ways. Whereas the former
method clusters points based on their similarity with each other, the latter clusters them based on their
similarity with the central user. Figure 4-b shows the results of the latter method. As further discussed
below, it is hard to know which method yields better results without actually getting feedback from users.
6.3. Constrained K-Means Clustering

The clustering methods covered so far did not accommodate user feedback, so we implemented a
constrained K-Means clustering algorithm that would incorporate user feedback as labeling on data to be
adhered to while clustering. User feedback would be in the form of “good friend” or “not good friend.”
Our algorithm would ensure that sample points with same label would be assigned to the same cluster,
and no cluster would contain points with different labels. In terms of implementation, constrained K-
Means differs from regular K-Means in the assignment of the labeled samples to a centroid. While regular
K-Means assigns each labeled sample to a centroid with the objective of minimizing that specific
sample’s Euclidian distance from the centroid, constrained K-Means finds the centroid yielding the
smallest value for the sum of distances of all the samples with a specific label and assigns them to that
centroid. To test this algorithm, we labeled the top 10 outputs of unconstrained K-Means and ran
constrained K-Means on the new semi-labeled data set. The results are shown in Figure 4-c.
6.4 Conclusions on Unsupervised and Semi-Supervised Learning

Testing was a major challenge on our “best friend suggestion” algorithms. Given the nature of the
problem, we could only test the algorithm on our own friends, and we did not have a coherent metric for
gauging the accuracy of results. However, results were encouraging; 75% of the 20 people reported by the

unconstrained K-Means algorithm were people that we would classify as good friends. Furthermore, a
significant drawback of the semi-supervised learning algorithm we used was that it only adjusted clusters,
not the definition of “good friends”, based on the user feedback. An algorithm that would adjust the
weights of different features, such as “Distance Metric Learning [1]”, could be more appropriate for the
question at hand.

0 20 40 60 80
-20

0

20

40

60

80

100

120
K-Means In Higher Dimensions

1st Eigen-Vector Dimension

2n
d

Ei
ge

n-
Ve

ct
or

 D
im

en
sio

n

4th Degree [r]
3rd Degree [g]
2nd Degree [y]
1st Degree[b]

0 20 40 60 80
-20

0

20

40

60

80

100

120
K-Means In Lower Dimensions

1st Eigen-Vector Dimension

2n
d

Ei
ge

n-
Ve

ct
or

 D
im

en
sio

n

4th Degree [r]
3rd Degree [g]
2nd Degree [y]
1st Degree[b]

0 20 40 60 80
-20

0

20

40

60

80

100

120

1st Eigen-Vector Dimension

2n
d

Ei
ge

n-
Ve

ct
or

 D
im

en
sio

n

Constrained K-Means with 10 Labeled Samples

4th Degree [r]
3rd Degree [g]
2nd Degree [y]
1st Degree[b]

7. Conclusion
In all of our algorithms, we found the best feature to be the percentage of friends that users had in

common, followed by the percentage of common groups and events. One reason for this result is the
sparseness of the data for many of the features. For example, many people have few events listed, so it is
common to see users who have no events in common with the central user. For other features, such as
activities and music, the problem is even worse because the entries for these categories are user generated
(i.e. prone to spelling errors or writing the same thing in different ways), which makes it even less likely
to see commonality among users. The sparseness of these features makes them harder to use than features
with denser data, such as number of common friends.

However, we believe the errors we found for our friend suggestion models show promise. Depending
on the metric, test errors are roughly in the 10-20% range. We believe that friend suggestion could be
useful even if only a much smaller fraction (say, one out of five) of our results were relevant. However,
we also realize that our error measures are by no means perfect. As discussed above, since we were
testing the ability to predict current friends rather than suggesting new ones, we would ultimately need to
test with actual users, and this is even more the case with our “best friend” predictor. Therefore, the next
step in our work would be to incorporate this model into a Facebook application and gather user feedback.

8. References
[1] Eric P. Xing, Andrew Y. Ng, Michael I. Jordan and Stuart Russel. Distance Metric Learning, with
application to clustering with side-information. University of California, Berkeley.

Figure 4-b
Figure 4-a Reduced to 2-Dimensions for
Visualization

Figure 4-c Reduced to 2-Dimensions for
Visualization

