3D RECONSTRUCTION OF BRAIN TISSUE

Hylke Buisman', Manuel Gomez-Rodriguez*, Saeed Hassanpour*

{hbuisman, manuelgr, saecedhp } @stanford.edu
TDepartment of Computer Science, Department of Electrical Engineering
Stanford University

ABSTRACT

We consider the problem of identifying neuron nuclei in a
stack of 2D images of brain tissue of a rat in order to con-
struct a 3D model of the neuron bodies. Our approach con-
sists of several a combination of image processing techniques,
machine learning algorithms and 3D rendering methods. Ini-
tially, edge detection (Prewitt filter), non linear diffusion, mor-
phological opening and black and white conversion are used
to highlight the neuron bodies in the original 2D images. In
the next phase, a supervised learning algorithm is used to de-
cide what part of the 2D images are neuron bodies and to
remove the noise. Evaluation of the algorithms showed that
SVM and Logistic regression worked particularly well. The
performance of both algorithms is analyzed. Finally, a 3D
model is generated using VTK.

Index Terms— Machine Learning, 3D reconstruction, brain

tissue, neuroscience

1. INTRODUCTION

Recent developments in biomedical methods, like Serial Block-
Face Scanning Electron Microscopy, make it possible to ob-
tain high-resolution images of brain tissue. In these methods,
a cube of brain tissue is cut in thin layers. In this project, rat
brain tissue has been used [1].

Our goal is to detect all the neuron nuclei in every layer
of the cube of brain tissue in order to build a 3D model of the
neuron nuclei located in a cube of brain tissue, as a first step
for a 3D automated tracking of neural activity. This builds on
previous work in this field [2]. In order to achieve this aim, we
apply several supervised learning approaches (logistic regres-
sion, SMO, etc.) combined with image processing techniques
and VTK.

In a first stage, the layers are processed in order to make
the nuclei more distinctly visible. For each layer, the algo-
rithm outputs a preprocessed image and a mask for every
neuron candidate. Thereafter, the relevant features of each
nucleus candidate are extracted from the images using the
masks, and every nucleus candidate in the training set is la-
beled using a handy labeling tool. In the next step, the ma-
chine learning algorithms are trained on this data and we ana-
lyze the performance of every algorithm using cross-validation.

Finally, a 3D model of neuron nuclei is built using the

results from these steps. The Visualization Toolkit (VTK),
that uses OpenGL, has been chosen to create the 3D model
since it significantly speeds up the rendering and the real-time
visualization.

This paper is organized in the following way. Section 2
is devoted to image processing techniques used in the prepro-
cessing of the brain tissue layers. Section 3 elaborates on the
definition and justification of the machine learning features.
Section 4 describes the machine learning algorithms chosen
to solve the classification problem and presents some quanti-
tative and graphical performance results. Section 5 elaborates
on the 3D rendering and visualization process. Finally, con-
clusions are discussed in section 6.

2. PREPROCESSING

The preprocessing section of the algorithm is used to trans-
form the rather unstructured input images to a form where it
is possible to extract relevant features. The output of this sec-
tion is a preprocessed image, and a list of masks indicating
where in the image nuclei are expected to be, in other words
a list of nucleus candidates is returned.

To achieve this, several image processing steps are applied
to the image. It is important to note that each of these steps
is tuned in such a way that the preprocessing will output too
many neuron candidates. This minimizes the amount of false
negatives! at the cost of including more false positives. By
doing this, the classification process is shifted from the image
(pre)processing section to the machine learning section.

2.1. Edge detection

The first step is edge detection: the edges of the nuclei are
fairly distinct in the input images, and their insides are of ir-
regular consistency. As a result, significantly more edges are
found at the edges of the nuclei and in their insides, than in
between the nuclei. Based on experimentation it turned out
the Prewitt edge detection works best for this application.

1 A false negative in this case, means that a part of the image that contains
a neuron is not present in the list of neuron candidates.

(a) Original image

(b) After the opening

(c) Black and white

Fig. 1. Preprocessing steps

2.2. Non-linear diffusion

The edge image roughly indicates where a nucleus is likely to
be, but on the wrong scale. A useful output would be a black
and white image that indicates areas where nuclei are likely
to be. To accomplish this, something similar to a blurring
is needed. However, applying a gaussian blur, would result
in losing information regarding the borders of the nucleus.
For this reason nonlinear diffusion is applied: it preserves the
edges, but also blurs edges inside the nuclei. The resulting
image is a more reasonable representation of what is likely to
be part of a nucleus, and what is not.

A positive side-effect, is that nonlinear diffusion is also
known to reduce noise [3]. In this case that means that the re-
sulting image will lose some of its (fine-grained) noise, which
makes it easier to work with.

2.3. Morphological opening

At this point the image is still not ready for conversion to
a black and white image. Thresholding at this stage would
result in some nuclei growing together and there would still be
noise present, which would unnecessarily slow down the rest
of the algorithm. To resolve this, a morphological opening is
applied.

A morphological opening is the combination of applying
an erosion, and then a dilation (also known as the Minkowski
subtraction and addition). An opening of set .4 with structur-
ing element B is denoted as:

AoB=(AeB)eB

where © and & are the erosion and dilation operators.
The erosion of two sets can be interpreted as all points where
the second set (the structuring element) can fit in the first set
(based on some center in B). The dilation is the set containing
all additions of points in both sets. Applying the opening op-
eration has the effect of removing all points that are smaller
or not of similar shape as the structuring element.

The structuring element was chosen to be a small disc
(with radius 4), such that small noise and forms that strongly
deviate from a round form (such as lines in the image) disap-
pear.

2.4. Thresholding

Finally the grayscale image can be thresholded to a black and
white image. To ensure that the values of the image are be-
tween zero and one, the image is first normalized using con-
trast stretching (in our case this is achieved by dividing it by
the maximum value). The threshold is then set to a very low
value, to prevent increasing the number of false negatives.
The value of the threshold was chosen experimentally.

An overview of the preprocessing steps can be found in
Figure 1

3. SELECTION AND EXTRACTION OF FEATURES

In the final output of the preprocessing step, all contiguous
areas of white pixels are extracted from the image. Each of
these is considered to be a nucleus candidate. For the learning
task of classifying these candidates as being an actual nucleus
or not, a set of relevant features needs to be selected. These
features should provide sufficient information to distinguish
noise from actual nuclei.

After analyzing the set of unprocessed and preprocessed
images, the following features were selected:

1. Roundness

2. Density

3. Relative density with respect to contiguous layers

4. Area

In the following paragraphs, these features will be moti-
vated and defined.

3.1. Roundness

For this application, the roundness of a nucleus n in a layer [,
ri(n), is defined as

k
) = 1 (s~ () 1)

1 -
E (d) = E Z \/(.’171 xc)2 + (yl - yc)2 (2)
di =/ (xi — 2)? + (i — Ye)%; 3)

where { Zi, yt)} is the set of coordinates of the pixels that
belongs to a neuron nucleus 7 in a layer [and (., y.) is the
center of n in [. A pixel (z;,y;) belongs to a neuron nucleus
n in a layer [if the value of (z;, y;) in the mask [is 1.

Note that r;(n) will be small for a set of points, for which
the variance of the distance between each point and the cen-
troid is small. 7;(n) = 0 would mean that n is a disk.

The choice for roundness as a feature is justified by the
relatively frequent occurrence of round nuclei. In addition
noise tends to be non-round of nature (like lines in the image).
These observations make roundness a relevant feature.

3.2. Intensity

The intensity of a neuron nucleus n in a layer I, D;(n), is
defined as

1 k
7%2 (75.5) @)
=1

where {d(; 4. }le is the set of intensity values of the pix-

els {(;, yi)}le in the preprocessed layer /. Again, A pixel
(x4, y;) belongs to a neuron nucleus 7 in a layer [if the value
of (x;,y;) in the mask [is 1.

D(n) has a lower value for neuron nuclei than for the
background of the preprocessed images, being a relevant fea-
ture to distinguish neuron nuclei from noise.

3.3. Relative intensity

We define the previous relative intensity, RD,, (n), and next
relative intensity, RD,, (n), of a neuron nucleus n in a layer [
as

L E
— |E;dp(xmyi) — Dy(n)] ®)

k
1
Mwnggam@wﬂmn (©6)
where D;(n) is the intensity of the neuron nucleus n in the
ko . .
current layer [, {dp(:vz-, yi)}izl is the set of intensity values

in the preprocessed layer [— 1 (previous layer) of the pixels
that belong to the neuron nucleus 7 in the current layer [/, and

{d T, yz)} ,— 1s the set of intensity values in the prepro-
cessed layer [+ 1 (next layer) of the pixels that belong to the
neuron nucleus n in the current layer [.

Both values have to be close to 0 for the set of pixels of a
neuron nucleus because the intensity difference between con-
tiguous layers is not very big. On the other hand, in case of
having noise, the intensity of the set of pixels can be com-
pletely different between contiguous layers. Then, the pre-
vious and next relative intensity can be a relevant feature to
classify neuron nuclei. This feature is expected to be useful
in modeling the continuity between images.

3.4. Area

The area of a neuron nucleus 7 in a layer [, A;, is defined as
Ai(n) =k (7

where k£ is the number of pixels that belong to a neuron nu-
cleus n in a layer I. As stated before, a pixel (z;, y;) belongs
to a neuron nucleus n in a layer [if the value of (x;, y;) in the
mask [is 1.

Intuitively, too big or too small values of areas are good
reasons to discard a candidate neuron nucleus.

4. MACHINE LEARNING ALGORITHMS

After building the set of nucleus candidates and extracting a
full set of features for each of them, machine learning can
now be applied. In order to evaluate the performance of many
different algorithms, the Weka toolkit [4] was used. This
machine learning toolkit provides a large set of ready-to-use
machine learning algorithms, which can also be readily inte-
grated within the MATLAB environment.

The following methods where applied: decision tree learn-
ers, bayesian classifiers, rule based learners, logistic regres-
sion and support vector machines.

4.1. Labeling

Labeling nucleus candidates for every preprocessed layer to
create a training set is a tedious task. In order to accelerate
this task we have developed a tool that handily highlights the
current, previous and next image. This is done by calculating
the convex hull of the mask of every candidate, which is then
superimposed on the preprocessed image?. In addition to this,
labeling judgments were also based on the contents of the raw
images within the superimposed mask outline. This method
of labeling proved to be more accurate compared to just using
the preprocessed images.

Using this method a total of 60 images were labeled, which
on average contain 42 nucleus candidates. Thus, a total of
about 2500 instances were used for learning.

2Using just the preprocessed images for labeling is the method that was
described and used for the milestone.

5.0

45

4.0

3.5

10 20 30 40 50 60 70 80 20 100
Training set size (% of total)
‘O Test Error

(a) SMO

Train error

5.0

4.5

4.0

3.5

3.0

25

Error (%)

2.0

10 20 30 40 50 60 70 80 %0 100
Traing set size (% of total)

O Trainerror O Test error

(b) Logistic

Fig. 2. Supervised learning algorithms performance

4.2. Evaluation

The initial experiments done with WEKA showed that logis-
tic regression (with a ridge estimator) and SMO performed
particularly well on this task. Based on this observation, sev-
eral more experiments were done to find the best choice of
parameters. For SMO a polynomial kernel of degree 15 gave
best precision. For logistic regression, the ridge parameter
was left unchanged, since no significant increase was achieved
by changing it. Simple logistic regression performed just as
well on the task, however it was significantly slower. In Fig-
ure 2 the results of the algorithms can be found. These results
where computed with 10-fold cross-validation on the whole
data set.

Although the precision of the SMO with degree 15 poly-
nomial kernel performed significantly better, logistic regres-
sion can be chosen if time is more important than precision:
model building takes 12 seconds for SMO compared to 0.13
seconds for logistic regression. Since logistic regression also
outperforms the linear kernel SMO (which exhibits similar
speed), logistic regression would be the best choice if time is
more important.

To be able to appreciate these results, it is worth mention-
ing the results using the ‘trivial classifier’ (sometimes referred
to as a zero-rule classifier); this classifier always predicts the
majority class. Applying this algorithm gives a precision of
83%. Consequently, the results as shown in Figure 2 show
that applying these non-trivial algorithms result in a 15% in-
crease of precision.

Finally, comparing the evolution of the training error and
the test error and comparing its values, it is noticeable that
SMO has a higher variance. This is an expected result if it is
taken into account that a higher order classification space is
used in SMO because of having a polynomial kernel.

5. 3D RENDERING

After classifying the nucleus candidates with SMO, and thus
removing nearly all further noise, the output is used to gen-
erate the 3D model. For the modeling, The Visualization
ToolKit (VTK), which is an open source C++ library for 3D
computer graphics, was used [5]. VTK uses OpenGL (Open
Graphics Library) for basic computer graphics functions and
presents higher level functions for 3D visualization and image
processing.

First, an edge detection algorithm is applied, to specify
the edges and extract the nuclei surfaces. These surfaces are
then covered with polygonal meshes. Finally, the meshes are
mapped through the stack to render the 3D model using VTK.

Figure 3 shows two 3D models: one has been generated
using the 2D images before applying SMO to reduce the noise
and the other was built using the 2D images after applying
SMO. These images give a good impression of the improve-
ment the application of machine learning gives: the neuron
bodies can easily be distinguished now that the noise has been
removed.

6. CONCLUSIONS

The method presented in this paper provides a way for infer-
ring the spatial location and structure of neuron bodies and
the spatial relation between them if 2D images of a stack of
brain tissue are the only information available [1].

Regarding the overall quantitative performance of the method
presented in this paper, machine learning performance has
been used as an approximation of it. Based on the quanti-
tative performance analysis presented on the section 4, it is
noticeable a significant improvement of the error if a super-
vised machine learning (approximately 98%) is used instead
of using only a ‘trivial classifier’ (approximately 80%). It is

(a) 3D rendering before applying machine learning

(b) 3D rendering after applying machine learning

Fig. 3. 3D rendering

assumed that labeling using the preprocessed images and the
original ones is correct.?

It is difficult to measure the accuracy of the preprocess-
ing steps and the 3D model representation. To measure the
performance of the preprocessing steps, it would be required
to label the data based only on the original images, not the
preprocessed ones. This is not manageable, taking into ac-
count the vague nature of the original images. To estimate
the performance of the 3D model representation, it would be
necessary to compare the 3D model with a reference, which
is not available.

Focusing on the relationship between test error and amount
of training data, the results suggest that increasing the size of
the training set, would improve the performance even more.
It was not possible to verify the last statement because of the
unavailability of more data.

7. ACKNOWLEDGMENTS

The authors thank Assistant Professor Mark Schnitzer for pro-
viding us access to the data set of rat brain tissue and Assistant
Professor Tom Clandinin for giving us expert information re-
garding this data set.

8. REFERENCES

[1] K.D. Micheva and S.J. Smith, “Array Tomography: A
New Tool for Imaging the Molecular Architecture and
Ultrastructure of Neural Circuits,” Neuron, vol. 55, no.
1, pp. 25-36, 2007.

[2] J. H. Macke, N. Maack, R. Gupta, W. Denk, B. Schlkopf,
and A. Borst, “Contour-propagation algorithms for semi-
automated reconstruction of neural processes,” Journal
of Neuroscience Methods, vol. Epub ahead, pp. 1-18, 08
2007.

[3] P. Mrazek, “Nonlinear Diffusion for Image Filtering and
Monotonicity Enhancement,” Prague: Czech Technical
University, 2001.

3The preprocess section has been designed to maximize the amount of
candidate neuron bodies. Then, false negatives are minimized by the prepro-
cess itself and false positives are reduced by the expertise of the labeler

[4] L.H. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes,
and S.J. Cunningham, “Weka: Practical Machine Learn-
ing Tools and Techniques with Java Implementations,”
ICONIP/ANZIIS/ANNES, pp. 192-196, 1999.

[5] W. Schroeder, K. Martin, and B. Lorensen, ‘“The Vi-
sualization Toolkit An Object-Oriented Approach To 3D
Graphics, Kitware,” Inc. publishers, vol. 2, 2004.

