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Abstract 

 
The current state of the art object recognition systems 

work reasonably well for limited data sets. In the case of 
feature based methods, apart from being object specific 
the amount of features in the database also grows linearly 
with the number of objects. Similarly, in patch based 
methods if the number of patches are kept constant 
irrespective of the number of objects to be recognized, the 
performance drops. This paper presents a novel approach 
towards sharing features between objects of the same 
class to create a dictionary of shared features for that 
class. It uses a combination of the feature & patch based 
approaches to enable creation of Shared SIFT features & 
also recognition of other objects of the same class using 
these Shared SIFT features. 
 

1. Introduction 
The problem of object detection within images is an age 

old one and the solution to which has tremendous 
applications in a variety of fields such as robotics, human 
computer interaction and online advertising. One of the 
commonly used feature based techniques for object 
recognition is SIFT (Scale Invariant Feature Transform) 
[1]. SIFT gives extremely good results for very specific 
objects but does not generalize well across a class of 
objects. Also, the number of features in the database 
increases linearly with the number of objects to be 
recognized. Hence, SIFT is not a very good choice for 
recognizing objects from the same class, especially for 
objects it has not been trained to recognize.  

A different approach is the use of shared patch based 
features for multi-class object detection [2]. This approach 
works quite well but if the numbers of patches are kept 
constant and the numbers of objects are increased the 
performance will take a hit. It is faced with a similar 
challenge of increasing patch features with the number of 
objects though not linearly. Similar to these Torralba 
patches, [3] also uses a patch based approach via the use 
of Gabor wavelets to enable feature sharing for object 
recognition. Another interesting approach is to create a 3D 
model of the object class from training images and share 
SIFT features by simply placing them onto correct 
locations of the 3D model [4]. This approach does not 

take into account the fact that SIFT features work very 
well for specific objects but do not generalize well across 
that class of objects.  

This paper presents a novel approach that combines 
elements from the feature and patch based approaches to 
provide a method that creates Shared SIFT features which 
can be used for recognizing multiple objects of the same 
class.  

In its first stage termed as descriptor training it looks at 
a set of images from the same object class and uses patch 
based correlation to find similar areas on the image which 
should be shared using the proposed Shared SIFT 
technique. This provides a set of descriptors which act as 
the dictionary for that object class, such as mugs, bottles 
etc. Using matching techniques in feature space, matches 
are located from the dictionary in positive and negative 
training images and are used to train a multinomial naïve 
Bayes classifier. This classifier is then used to iterate over 
a given test image to assign to each part a probability that 
an object from that object class is located in that part. 
Filtering based on these probabilities results in localizing 
regions within the test image that contain objects of the 
same class which the classifier has never seen before. 

 

2. Shared SIFT Descriptors 
The original SIFT approach uses difference of 

Gaussians, neighborhood maximization & minimization 
followed by magnitude & other filtering mechanisms to 
find unique locations on the image which are consistent 
and hence should be found repeatedly under a variety of 
scales ,orientations and viewpoints. Further, the algorithm 
uses gradient magnitude and orientation maps to assign 
each of these locations (or keypoints) with an orientation 
& scale which is used to create a descriptor of the patch 
around that keypoint.  

The proposed Shared SIFT approach aims to use 
gradient and orientation maps from similar looking 
patches in a neighborhood of the original keypoint from 
all of the descriptor training images to create a shared 
descriptor for that point. Figure 1 illustrates this process.  

To begin with keypoints (not descriptors) are 
individually extracted from all descriptor training images 
using the original SIFT approach. A patch correlation 
technique similar to the one described in [2] is then used 
to find the most similar match to the patch surrounding the 
keypoint in the source image in all of the other descriptor 
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training images. To avoid having to perfectly align the 
images and allowing sharing across images of slightly 
different sizes this search is conducted in a neighborhood 
of the location of the keypoint in all of the descriptor 

training images. In the next step, gradient magnitude and 
orientation maps at these similar patches are combined to 
give orientation and scale information to that keypoint. 

 
 
 

Further, instead of creating separate histograms for each 
of the individual patches in the images, the keypoint 
information computed above and all the gradient maps 
from similar patches are used to create a shared or 
averaged histogram which provides a smoothened 
common representation of all the patches being shared. 
The shared sift descriptor for that location is then 
computed from this shared histogram.  

One major advantage of sharing patches across the 
descriptor images is that variance metrics can be used to 
judge how well the shared patch represents the original 
patches in the descriptor training images.  
 

 
 

 
 
 

 

 Figure 1: The process of creating Shared SIFT descriptors
 
 

Figure 2: SIFT keypoints found on the rims of two mugs. A 
patch correlation algorithm found the keypoints in blue to be 

representing a very similar patch 
 
Shown in Figure 2 is the zoomed in view of keypoints 

on the upper rims of two mugs. The patch based 
correlation found the patch around the keypoints in blue to 
be quite similar in both the images. On the other hand 
Figure 2 also shows 2 keypoints in blue which were found 
to be similar but the similarity was quite low. 

 

 
 

 
 

Figure 3: SIFT keypoints found on the centre of two mugs. A 
patch correlation algorithm found the keypoints in blue to be 

representing a not so similar patch 
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Thus, it is quite intuitive to see that a shared descriptor 
for the keypoints in Figure 2 will be much closer in the 
128 dimension space (All SIFT descriptors are 128 length 
vectors) to the keypoints it represents and similarly the 
shared descriptor that represents the keypoints in blue in 
Figure 3 will be further away from the keypoints it 
represents in feature space. The variance metric shown in 
Figure 4 computes the average distance between a shared 
descriptor and the individual patches in the descriptor 
training images that it represents. The distance is a 
Euclidean distance computed in the 128 dimensional 
space. 
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Where d represents the 128 dimension shared descriptor and f 
represents the set of m descriptors from the m patches it 
represents. 
 

Figure 4: The formula used to compute the variance of the 
Shared descriptor with descriptors of the patches it represents 

 
Computing these variance metrics for each shared 
descriptor and taking only the descriptors which have a 
variance less than a set threshold results in taking only the 
descriptors which are good indicators of that object class 
rather than any of the specific objects. Figure 5(a) shows 
all the shared descriptors found after sharing a set of 18 
mug images. Figure 5(b) shows the set remaining after 
applying variance based filtering. This filtered set of 
shared descriptors now represents the dictionary of 
descriptors for the class of mugs. 
 
 

     
(a)       (b) 

Figure 6: A representation of a shared object class after sharing 
18 mug images (a) Plots of all the shared descriptors (b) Plots of 

the shared descriptors after variance based filtering 
 
 
 

3. Matching Descriptors in Feature Space 
 
In the original SIFT descriptor comparison approach, 

every descriptor in one image is compared to every other 
descriptor in the second image via the distance metric 
(Euclidean distance) shown in Figure 4. The base 
approach being the same, the altered matching algorithm 
also takes into account the variance of the shared 
descriptor. When comparing a new image to the dictionary 
of features of an object, the dictionary is scanned to find 
the best match for each SIFT keypoint in the new image. 
Further, the variance of the shared descriptor which was 
found as the best match in the dictionary is used to decide 
whether the keypoint in the new image qualifies as a 
match or not.  

There were a lot of experiments carried out using a 
variety of different decision techniques to label a keypoint 
as a match or not. One successful technique labeled a 
keypoint as a match if in feature space the Euclidean 
distance to the closest shared descriptor was less than the 
variance of that descriptor, which implies that the given 
keypoint is close in feature space to the shared descriptor 
and the keypoints that it represents in feature space.  

The other technique which was quite successful was a 
modification of the matching technique described in [1] 
which uses the distance to the two closest shared 
descriptors in feature space and checks if these two 
distances are within a certain percentage of each other. 
This would indicate that the keypoint is also close to 
another point in the object feature space and this indicates 
a high probability that the keypoint belongs to the object 
feature space. Figure 7 shows the matches resulting from 
matching the mug dictionary on the right to a new mug 
which it has not been trained upon in the descriptor 
training stage. 
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Figure 7: Matching pairs using a variance based threshold 
method between the mug dictionary and a new mug it has never 

seen before 
         

4. Multinomial Naïve Bayes (Bag of Features) 
Continuing with the analogy to text based search, the 

dictionary of an object class is used in conjunction with 
distance metrics discussed in the previous section to 
tabulate which individual shared descriptors or words 
were found in the new image or document.  

Traditionally the Multinomial Naïve Bayes model for 
text simply counts the number of times a word from the 
dictionary appears in the given document. Similar to this, 
initially the distance metrics were used to find the count of 
the number of times a shared descriptor appears in the 
given image. This approach is called the bag of features 
model. Hence, the feature vector for a single image is the 
same length as that of the dictionary of the object class 
being searched and each entry in the feature matrix 
indicates the count of the number of times that shared 
descriptor was found in the new image which that row 
represents. 
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Where X is the feature matrix, Y are the labels representing 
whether the image belongs to the object class or not. N is the 
length of the dictionary of the object class. M is the total number 
of training images. X[i,j] indicates the number of times shared 
descriptor ‘j’ from the dictionary was found in the image ‘i’. 

 
Figure 8: Representation of the feature matrix X and labels Y 

 
The training set for the mug experiment comprised of 15 
positive images which contained mugs in them and 15 
negative images which were random patches from the 
background with and without other objects. It should also 
be noted that the 15 mugs used for the positive training 
samples were all different from the 18 mugs used for 
descriptor training. Figure 9(a) shows some examples of 
positive training images and 9(b) shows examples from 
the negative training images. 
 
 

 
(a) 

 
 
 

 
(b) 

Figure 9: Training Set (a) Examples of Positive Images (b) 
Examples of Negatives Images 

 
The training set is used to compute the prior probability of 
a sample being positive or negative and also the individual 
positive and negative probabilities for each shared 
descriptor, as is done in the text classification model of 
Multinomial Naïve Bayes.  

After testing the above defined Multinomial Naïve 
Bayes classifier on a set of test images, the simple metric 
of simply counting the number of times a shared 
descriptor was found in the image did not turn out to be 
very accurate, since a group of false but weak features 
could generate a false positive. Further experiments were 
conducted with using different metrics to create the 
feature vector for a given image. One of the successful 
ones takes the contribution of every keypoint on the image 
to the feature vector instead of just the positive matches. 
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The count of positive matches is now replaced by the sum 
of the distances of that particular shared descriptor to the 
keypoints in the image for which it is the closest in feature 
space. Thus, each entry in the feature matrix is now a real 
number and not simply an integer count. This metric 
allows the classifier to differentiate between a set of 
strong keypoints at smaller distances in feature spaces 
versus a set of weak keypoints at larger distances 
especially when both keypoints are nearly the same 
number. 

To test the object classifier, test images were collected 
using a digital camera of table scenes with mugs in them. 
One possible limitation of SIFT is that objects within the 
images need to be of a certain size to get enough features 
off them. Thus, when attempting to recognize objects 
from the SIFT features of an image the objects within the 
image must be at least 200 by 200 pixels. Hence, the test 
images were all 3200 by 2700 in resolution.  

In order to localize the objects within the images, the 
test image of the scene was dividing into closely spaced 
windows. The SIFT features falling within the window 
were then matched to the dictionary of the object and a 
feature vector was generated for each window within the 
image. The Multinomial Naïve Bayes classifier then used 
this feature vector and the probabilities computed during 
the training step to assign a probability of the occurrence 
of the object to each window. Thresholds were set onto 
these probabilities to localize areas of high probabilities 
which ideally would contain the object who’s classifier 
was run.  

 

5. Results 
 
After the training step, 32 high resolution digital images 

of mug scenes were taken in an office environment and 
the process of applying probabilities to each window 
within those images was used to compute the belief maps 
shown in Column (a) of Figure 10, where white indicated 
high probability and black indicated low probability on a 
grayscale mapping to probability. Column (b) shows the 
result of putting a threshold on these probabilities to 
localize the object instances within the image. Figure 11 
shows a precision-recall curve which was plotted by 
computing the precision and recall on the test set of 32 
images by varying the threshold of probability used to 
localize objects in the belief map. 

 

  

  

  

  
    (a)            (b) 
Figure 10: Results on the test images. Images in column (a) are 

belief maps and images in column (b) are results after applying a 
threshold of probability on the belief maps 

 

 
Figure 11: Precision-Recall curve for the test set of 32 images 
 

6. Future Work 
The current implementation does not support multi-

view object recognition. Hence, the next step shall be to 
share images of an object class taken from different angles 
and then test them for multi-view detection.  
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Another aim shall be to test the Shared SIFT algorithm 
over a range of objects with different basic shapes to 
confirm that the variance filtering approach selects shared 
descriptors that represent a generic description of objects 
of a class.  

To enhance the accuracy of the matching process of 
descriptors in feature space, rather than relying on a 
combined variance for all the dimensions, a metric similar 
to the one in figure 4 will be used to compute the variance 
for each descriptor in each of the 128 dimensions. This 
will also change the distance formula used to in feature 
space and distances in each dimensions will be normalized 
by the variance of each shared descriptor in that 
dimension. Further, logistic regression will be used to get 
variance normalized distances of matches of each shared 
descriptor from positive and negative training images and 
then use them to find a threshold between the distance to 
an object descriptor and other descriptors. Thus, variance 
normalized distances of matches in test images will be 
used to evaluate the sigmoid function based on the 
parameters obtained off the training set to classify the 
keypoint as a match or not. 

Lastly, to improve performance for testing new images, 
instead of using the current approach of closely spaced 
windows, a better approach will be to cluster the SIFT 
features together into circular windows and assign 
probabilities only to each of these clusters. This clustering 
technique based on the Hough transform will lead to a 
significant improvement in performance. 
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