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Abstract

We contribute to the Intellectual Property Litigation
Clearinghouse (IPLC) project by providing an extensive
experimental evaluation of two classification techniques,
namely classification trees and support vector machines.
We focus on dockets belonging to the “Claim Construc-
tion order” class and we build classifiers that achieve
up to 87% precision with 88% recall. This provides
a 79% improvement on the best rules-based domain-
specific classifier that IPLC possess.

1 Problem Description

Our work was a contribution to the Intellectual Prop-
erty Litigation Clearinghouse (IPLC) [4]. IPLC aims
to be a comprehensive online information source on IP
lawsuits and will host general statistical information, as
well as text-searchable dockets, complaints, select mo-
tions, judicial opinions, and related data.

The dockets that are going to be searchable com-
prise of 2-3 lines of human-written text and are ac-
companied by some pdf documents with 20-30 pages
of images and text. These dockets are indexed by the
Patent Case they refer to and can be classified to ap-
proximately 40 different classes such as Order, Motion,
Patent, Judgement, etc.. In Fig. 1 we provide an ex-
ample of the dockets that belong to a specific patent
case. The information that the docket text conveys
is unstructured, since there are no rules for writing a
docket. People seem to follow general conventions for
the docket text of particular classes, but this is not true
for all the cases. For example, most of the docket texts
of class " Answer” start with the word ANSWER in up-
percase letters. This convention results in an easy rule
for the identification of dockets from a particular class.
However, there are classes where simple rules cannot be
derived; an example of such a class ("Marksman”) is
shown in the same figure.

A human can classify any docket to a class, since
he has access to the pdf documents that are attached to
it. However, since the pdf documents are scanned, we
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Figure 1: Dockets of a Patent Case

need to apply some OCR method to get their content
in machine-readable format and provide it as input to a
learning algorithm. Given the cost of such a procedure
we cannot consider it as feasible and any classification
algorithm should constrain its input to the rest of the
features that are available. The goal of our project
was in the first place to investigate whether there is
enough information in the rest of the features for the
classification of a docket and then build an optimal
classifier if that was possible.

2 Dataset

2.1 Description One of the non-trivial classes for
classification is the ”Claim Construction Order” (CCO)
class. Our Dataset consists of 3674 dockets that were
classified by an editorial team. 899 of them are ”Claim
Construction Order” (CCO) dockets and the rest 2775
are dockets of other classes. The dockets of the Dataset
refer to 1369 different cases and in general case they are
not related to each other, e.g. the non-CCO dockets are
not responses to CCO dockets.

2.2 Preparation The dockets preprocessing steps
performed are the following: i) Lexical analysis; ii) stop-
word elimination, that is the removal of very frequent
words such as articles, prepositions, conjunctions, et.
that carry little information about the contents of the
processed dockets; iii) stemming, that is the replace-
ment of all variants of a word with a single common



Table 1: Local and Global term weighting schemes

H Symbol Name Formula

Local term-weighting (I;;)

t Term frequency fij

b Binary b(fij)

1 Logarithmic logs (1 + fis)

a Alternate log b(fi;)(1 +log, fis)

n Augmented normalized term frequency  (b(f;;) + (fi;/ maxy fr;))/2
Global term-weighting (g;)

X None 1

e Entropy 1+ (22, (pijloga(pij))/ loga m)

f Inverse document frequency (IDF) logy(n/ > i b(fi;))

g GfIdf (225 fi)/ (32, 0(fi5))

n Normal 1/ /Zj 12J

P probabilistic Inverse log,((n — Z_j b(fi))/ Zj b(fi;))

Original Docket:

The Court approves the parties&#039; stipulated claim construction as to all
terms of the &#039;480, &#039;437, &#039;554, and &#039;541 patents.

4L Data Preprocessing

The Court approves the parties' stipulated claim construction as to all terms
of the '480, '437, '554, and '541 patents.

4; Elimination of Punctuation Marks

The Court approves the parties stipulated claim construction as to all terms
of the 480 437 554 and 541 patents

{; Stop Words Removal

‘ Court approves parties stipulated claim construction terms patents ‘

{} Stemming and Case Folding

‘ court approv parti stipul claim construct term patent ‘

Figure 2: Data Preparation

stem; iv) index-term selection, that is the selection of
a subset of words encountered in the dockets to form
the docket index;v) index construction. These steps are
illustrated in Fig. 2. The output of this process is a
term document matrix A. Each element «;; of the term
document matrix A measures the importance of term
in docket j and in the entire collection. There has been
proposed various term weighting schemes using alter-
native functions for the local and global weighting for
a term. Table 1 tabulates the various local and global
weighting schemes we considered in our experiments.
Another usual practise is the use of normalization for
each docket vector. This normalization factor is used for
the obliteration of bias towards longer documents. For
the implementation of the preprocessing step we used
the matlab toolbox Term Matrix Generator (TMG).
The dimension of our feature vector is n = 4947.

After the extraction of the feature vector for each

docket we divided our dataset into a training and a
test set. The training set included 70% of the positive
training examples and 70% of the negative examples of
the original dataset, and the test set included the rest
of the examples. We performed the partition of the
dataset using reservoir sampling to guarantee the size
of the resulting subsets.

3 Baseline Approach

The algorithm that is currently used for the classifica-
tion of the dockets is rule-based. These rules derive
from human heuristics and take advantage of domain-
specific knowledge. To evaluate the performance of this
algorithm, as well as the classification methods we pro-
pose, we use standard performance measures such as
precision, recall and F-1 measure. We present the cor-
responding formulas for the classification of CCO doc-
uments in the following equations:

classified in CCO U dockets in CCO

classified in CCO
classified in CCO U dockets in CCO

dockets in CCO
oo precision - recall

Precision =

Recall =

precision + recall

The performance measures for the used classifica-
tion method and the class CCO are shown in Eq. 3.1.
We observe that precision is high and recall is small;
this is so that the classification method can return a few
false negative dockets. An editorial team reviewed the
positive dockets returned by the algorithm and filtered
out the true CCO dockets. We use the performance
measures of this classification method as a baseline for
comparison with our proposed methods.



Precisiony,ge = 0.98
Recallp e = 0.32

(3.1) Fhase = 0.49

4 Classification Trees

Tree-based methods for classification and regression
partition the feature space into a set of rectangles and
then fit a simple model in each one. The most common
such model is the constant function. For our problem,
we used CART [1], a popular method usually used in
regression and classification problems.

The conceptual simplicity of the CART yields its
limitations. For example, the partition of the feature-
space into rectangles fails to capture non-rectangular
distributions of the data. Trees can approximate other
distributions only with a big number of small rectan-
gles that increase the complexity and, consequently, the
variance of the model. There are several proposed meth-
ods that handle CART’s limitations such as bagging [2]
and boosting [3], but they are out of the scope of this
paper.

Despite their limitations, in our work we used
only naive tree-based methods, because of the great
interpretability of the classification algorithm decisions
that they offer. As we discuss below, such trees
reduce the classification problem into binary decisions
on values of feature vector’s dimensions. Our goal
using classification trees was to gain an insight of
the significant dimensions of the feature vectors that
actually have an impact on classification. Since CART
is conceptually simple, we could convey this insight to
people with little or no knowledge of machine learning.

4.1 Description In our case we deal with a binary
classification problem. The target variable has value 1
if a training example belongs to the class ”Claim Con-
struction Order” and value 0 if the example does not
belong to this class. Our feature vector x; shows the
frequency of the words of our dictionary in docket ¢ (cor-
responding to the weighting scheme txx as described in
Section 2.2).

Let R; be the feature space of our training exam-
ples. In our case R; = R" and it contains all m; = m
training examples. Let p1g be the ratio of examples in
Ry that do not belong to ”Claim Construction Order”
class. Similarly, we define the ration p;; for examples
that do belong to the class. In general, for region Ry
we define:

1
(4.2) pro=— 3 I{yi=0}
M T, ERy
1
(4.3) pa=— Y Hyi=1}
"Mk z;ERy,

We start the training of our algorithm by classifying
all the training examples of region R; to the majority
value of the response variable y. Since most of our
training examples do not belong to class "CCQO”, the
most naive classifier would predict that a given docket
does not belong to this class (since it tries to minimize
the classification error). We define the impurity Q(1) of
area R; using the ’Gini’ index that we show in Eq. 4.4
for area Ry.

(4.4) Q(k) = pro(1 — pro) + pr1(1 — pr1)

The 'Gini’ index is an indicator of how ”pure” an area is
in terms of the different values that the target variable
takes in that area. We get Q(k) = 0 if all training
examples of one area belong to the same class.

The next step of the algorithm depends on the value
of the complexity parameter cp and the gain Q(1) —
(Q(2) + Q(3)) we obtain if we partition our training set
into two distinct subsets that span regions R and R3 of
our feature space, so that RoNR3 = @ and RyURs = R;.
First we explain how we determine the optimal partition
of region R; and then we give more details in the role
of ¢p. We partition the region R; into regions Ry and
R3 in a way such that we can determine whether an
element x; € R; belongs either to Ry or Rs with a
binary decision based on the value of only one specific
dimension of its feature vector. The binary decision is
whether x;’s value for the specific dimension is le or >
than one splitting value. We select the dimension and
the splitting value so that the gain Q(1) — (Q(2)+Q(3))
we have in the purity of the new regions Ry and Rj is
maximized. In our case, the splitting of a region based
on a value of a specific dimension of the feature vector
yields partition of the dockets into two subsets based
on the frequency of one specific word. For example, if
word ”constru” (derived from construct, construction,
constructed, etc.) is the word that divides the dockets
into two as pure as possible subsets, we will divide the
dockets in these two subsets. In the best case, where
”constru” appears in all dockets of our class and no
document that does not belong to our class has the word
”contru” in it, we will divide the dockets into two pure
subsets and we get the maximum possible gain.

It is easy to see that without penalizing a region
splitting we would stop splitting only in cases where
we have pure areas, since it is easy to prove that we can



always split an impure region into two, having a positive
gain in the purity of the resulting regions. However,
we limit the number of possible distinct regions by
adding to the impurity of area Ry the term cp. Hence,
in our case it would be worthwhile to split region R,
into regions Ry and Rj3 only if the gain Q(1) + ¢p —
(Q2)+ep+QB)+cp) = Q(1) — (Q(2) +Q(3)) —cp
was positive.

After splitting a region into two, the next step of
the algorithm requires to find first which region would
yield the maximum gain and then find the optimal
split for this region. In this optimization problem we
should take into consideration that a region splitting
that seems redundant may give the opportunity for
subregions’ splitting with great gain. To deal with
the recursive nature of the optimization problem we
construct the classification tree in a bottom-up fashion
rather than a top-down that we described so far. We
build initially a very large tree and then we prune it in
such a way so that we maximize the purity of the nodes
taking into consideration the complexity parameter that
is associated with each terminal node.

A slight variation of the algorithm above uses a
weighted version of the ’Gini’ index of Eq. 4.4. This
variation is used to penalize more the impurity of
regions with respect to one class than the other. We
show the updated formula in Eq. 4.5.

(4.5) Q(k) = Lopro(1 — pro) + L1ipr1(1 — pr1)

The new formula can result in different decisions for
node splitting, since if Ly > Ly, for example, we obtain
a greater gain if we split areas where the majority of
the examples belong to class "1’ and, hence, we have
misclassified examples of class ’0’. [[probably give more
detail]]

The algorithms finally returns a decision tree where
each branch illustrates a decision on specific dimension
of the features vectors. As a result, the dimensions of
the feature vectors that do not appear in any branch
are completely ignored during the classification of a
new feature vector. In our context, that means that
docket words that do not appear on the tree do not play
any role in the classification of new docket that does
not belong to our training set. Hence, the words that
actually appear in the tree branches can be considered
as the significant ones in our classification problem.

4.2 Tuning Classification Trees We fitted differ-
ent classification trees to the data of our training set and
test their performance measures in the classification of
the test set. To construct different trees we varied the
parameters Lg and cp.

In particular, we considered the value of Ly =1 as

091
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Figure 3: Performance Measures of Classification Tree
for Varying L

fixed and we varied the parameter Lg in the interval
[0.2,4]. For each value of Ly we varied the complexity
parameter cp to all possible values that are greater than
0.0001. These values are finite if we consider only one
value in every interval that results in a different pruning
of the large tree we initially construct. Finally, for each
Lo we kept only the tree (an the corresponding value of
¢p) that had the smallest misclassification error on the
test set.

4.3 Results We show the performance measures for
the optimal tree we obtained for each value of Lg in
Fig. 3. The x-axis of the plot show the values of Ly an
the three curves correspond to the precision, recall and
F performance measures. We see that the value of Ly
that maximizes the F measure is 0.6. We see that as L
increases we see an increase in the precision, because
our classification tree classifies only the pure nodes as
CCO and they tend represent approximately 85% of the
total number of CCO dockets. The change of the weight
Ly cannot change the classification decision for these
regions, sine there are no misclassified dockets that are
not CCO. On the other hand, recall decreases because
we misclassify more and more positive examples as
negatives in non-pure nodes, since this is not penalized
because of the increase of Ly with respect to L.

In Eq. 5.7 we provide the performance measures
for the optimal tree. We see that with the appropriate
tuning of this simple classifier we get an improvement
of +68.5% with respect to our base case.

Precisioniee = 0.79
Recallipee = 0.86
Firee = 0.8
(4.6) Improvement = +468.5%



Precision/Recall/F-1 values for SVM with different Cost Factors (linear kernel)
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Figure 4: Comparing Precision/Recall for SVM classi-
fiers with different cost factor and for five different in-
dexing schemes ((i) term frequency (txx) (ii) term fre-
quency /probabilistic inverse (tpx) (iii) term frequency /
inverse document frequency (tix) (iv) logarithmix (Ixx)
(v) logarithmix/probabilistic inverse)
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Figure 5: Pruned Optimal Tree

We show a pruned version of the optimal tree in Fig. 5.
The words that were actually used in the construction
of the optimal tree are: brief, constru, coordin, deni,
disput, file, hear, hrg, judg, motion, manag, notic,
opinion, parti, patent, plaintiff, schedul, set, staff,
stipul, strike and summari. We see that out of the
approximately 5000 dimensions of our feature vectors,
classification trees achieve an 68.5% by utilizing only 22
of them.

5 Support Vector Machines (SVM)

5.1 Description Support vector machines (SVMs)
are a set of related supervised learning methods used
for classification and regression. They belong to a fam-
ily of generalized linear classifiers. A special property
of SVMs is that they simultaneously minimize the em-
pirical classification error and maximize the geometric
margin; hence they are also known as maximum margin
classifiers. Support vector machines map input vectors
to a higher dimensional space where a maximal sepa-
rating hyperplane is constructed. Two parallel hyper-
planes are constructed on each side of the hyperplane
that separates the data. The separating hyperplane is
the hyperplane that maximizes the distance between the
two parallel hyperplanes. An assumption is made that
the larger the margin or distance between these parallel
hyperplanes the better the generalisation error of the
classifier will be.

5.2 Tuning SVMs We performed a set of experi-
ments using support vector machines, and specifically
Thorsten Joachims SVMlight package, as binary classi-
fiers for dockets. We used a linear kernel function and
we varied the cost-factor; the factor by which training



errors on positive examples outweight errors on nega-
tive examples. We report results for cost factors in the
interval [0.1, 4] with a step of 0.1. We did not modify
any of the parameters of the SVMs we trained based
on the test set results, so we did not do a second level
development set/test set split.

Also, for each docket we used all combinations of
local and global term weighting schemes from Table 1
to derive the vector space representation of a docket.

5.3 Results Figure 4 illustrates the precision, recall
and F-1 measure for five different combinations of term
weighting schemes and variations of the cost factor used
in SVMs. Overall we noticed that simple term frequency
can yield the maximum F-1 value. Specifically the
performance results in that case are:

Precisioni;.e = 0.8696
Recally;ee = 0.88
Fiee = 0.87
(5.7) Improvement = +79%

This could be justified from the relatively small size
of the content of each docket. Notice that overall SVMs
improve the rules-based baseline by a factor of 79%.

6 Conclusions

In this paper, we focused on building classifiers for
the dockets belonging in a specific class. This was
done, since IPLC provided us training data for only this
class. We provided experimental evidence that we can
efficiently classify dockets of non-trivial classes using
only the docket text. Our optimal classifier yielded
an improvement in the current classification method
+79%. However, we think that we can build upon
our classification techniques and further improve the
classification accuracy by taking advantage of docket
feature that we were not provided with. These features
include the names of the attached documents to each
docket and the sequence of docket classes that are
formed in a patent case.

Future work includes the investigation of classifica-
tion methods that take into consideration the aforemen-
tioned additional features.
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