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Introduction 
Prediction of protein structure from amino acid (AA) sequence is one of the grand challenges of modern 
biochemistry. While ab initio structure prediction is difficult, prediction of local structure is more 
tractable if experimentally determined structures of homologous proteins exist. The prediction of local 
patches is useful in predicting interaction partners of proteins and nucleic acids. 

The high-dimensionality of this problem has so far prevented machine learning methods from making 
significant inroads. The space of AA sequences grows exponentially (20n) and the flexibility of proteins 
affords them an infinite conformational space. In this project we will focus on the problem of reducing 
the dimensionality of protein structures. We will tackle this problem in the context of predicting local 
patches of the DNA-binding region of helix-to-helix (HTH) proteins. We have chosen this protein family 
due to its biological significance and the relative availability of crystallized HTH-DNA complexes. 

Algorithm 
Our focus is on reducing the problem’s dimensionality by encoding HTH surfaces using an efficient basis 
set, then performing PCA on the entire family of HTH structures to characterize differences amongst 
individual family members. Once a significant reduction is achieved (we expect ~20 dimensions), it will 
be possible to apply machine learning methods to predict local structure from the AA sequence. 

1. Binding Patch Extraction 
The first step is defining and extracting the region of the 
HTH responsible for DNA binding. All HTH proteins employ 
an α-helical structure to bind DNA. Picking the helix closest 
to the DNA molecule is one way of identifying the correct α-
helix. Unfortunately, the region within the helix responsible 
for DNA-binding varies between proteins and so does the 
angle at which binding occurs (Figure 1). Since we want to 
represent the protein surface from the DNA’s perspective, 
we will spatially register all HTH-DNA complexes to bring 
their DNA molecules into superimposition. After alignment, the centroid of the DNA base closest to the 
binding helix will be used as the center of a rectangular region which will define the DNA-binding surface 
patch of the protein. 

1.1 DNA-binding α-helix identification 
To identify the DNA-binding helix, the Euclidean distance between every atom in the DNA molecule and 
every atom in all helices is calculated. The helix with at least n residues that have at least 1 atom within 
ε of any atom of the DNA molecule is selected as a DNA-binding helix. Letting hm be 1 if the mth helix 
binds DNA and 0 if it does not, we have: 
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Figure 1: Helices interact with the HTH binding 
pocket at different angles. (Helices are in red) 



Where pijm is the position of atom j in residue i in helix m, and pk is the position of atom a in the DNA. 
Currently n is set to 4 and ε to 400 Å. This successfully identifies the DNA-binding α-helix (Figure 2.) 

1.2 3D Registration 
The next step is registration of the HTH-DNA complexes, which 
is equivalent to the pairwise registration of 3D point clouds. 
Given the complexity of our surface, optimal methods like 
geometric hashing (1) are too slow. Instead we implemented 
an algorithm based on local shape descriptors. It works by 
computing a handful of distinct local features on the surface, 
and then uses those features to perform the alignment instead 
of using every point. Many such algorithms exist, and we 
implemented Gelfand’s et al. method (2) for our purposes. 

Gelfand’s et al. method employs an integral shape descriptor 
due to its noise-tolerance, in lieu of differential descriptors such 
as curvature which are sensitive to noise. For each point in the 
model, a sphere of radius r is formed around the point, and the volume of the surface inside the sphere 
is calculated (Figure 3.) Volume calculations are performed by discretizing the space around the sphere, 
and using a ray shooting algorithm (3) to determine whether each discretized point in space is inside or 
outside the surface. Volumes of the inside points are summed to approximate the total volume. 

Since we only want features that define unique points on the surface, we select the most distinct and 
rare features. This is done by binning features based on volume, and then picking out features from the 
least populated (most unique) bins. Features within radius Re of each other are removed. 

To improve robustness, we also filter features to insure that they are 
persistent across multiple scales, and thus unlikely to have arisen by 
noise. We do so by computing the descriptors at multiple radii, and 
then picking features deemed rare at multiple consecutive scales. 

Descriptors are calculated as described for the model and data 
surfaces. For each feature in the data surface, we search in the model 
to find features whose volume is within ε of the data surface feature. 
This results in a set of putative matches for each point in the data 
surface. We QT cluster this set (4), and then pick the feature from each 
cluster that is least different between the model and data surfaces. 

For each feature in the data surface we now have a set of putative matches in the model. To perform 
the registration, we use a branch and bound algorithm to find an optimal correspondence. Assume that 
k-1 points have already been matched. For each possible kth point, we calculate the global dRMS of the 
resulting correspondence. Points that result in a dRMS above Rc are pruned from the search. The first 
point to result in a dRMS below Rc is used to form a new correspondence out of k points. This process is 
iterated. If all features within a branch are found to increase the dRMS above Rc, we backtrack and 
consider earlier points that were not previously considered. Once we have run through all features, we 
test the putative correspondence by transforming the full model and calculating the resulting cRMS over 
all points. Note that we can also perform partial registration by excluding some points from the 
correspondence. 

Figure 2: Correctly identified DNA-binding 
helix is in red, other helices in green. 

Figure 3: Shaded region represents 
volume of integral descriptor. Figure 
adapted from (2). 



Figure 5: Projection of DNA-
binding helix onto 2D plane. 
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After global registration, a post-processing step is necessary to bring the two structures into final 
alignment. We implemented the iterative closest points (ICP) algorithm to perform this local alignment. 
The combination of those two methods has proven effective for aligning molecular surfaces (Figure 4.) 

2. Surface Representation using Wavelets 
After the structures have been registered, a fixed portion of the 
protein surface involved in DNA binding is projected onto a 
rectangular 2D plane. Wavelet transforms will then be applied 
on this 2D representation. The need for a transformation step 
before PCA is necessitated by the fact that a sufficiently detailed 
2D projection of the protein surface is very high-dimensional 
(65k points per protein), rendering direct application of PCA 
computationally expensive (65k x 150 matrix).  

Our choice of wavelets was motivated by their decomposition of 
signals in both frequency and space domains. Given our long-
term objective of using this representation for protein structure 
prediction, we sought to exploit the localized nature of protein 
structure. Amino acid variations along the protein chain typically 
have only localized effects on the protein surface, rendering the effect of AA identity on the wavelet 
coefficients more direct if the contribution of each wavelet coefficient is itself localized in space. 

2.1 Surface Projection 
For each structure, we defined a fixed rectangular region in space upon which the surface of the DNA-
binding α-helix is projected. The location and orientation of this region were determined as follows. 
First, the centroid of the DNA base closest to the α-helix was computed as the mean position of all its 
backbone carbon atoms. The origin was defined to be the centroid, with 
the y axis running parallel to the long axis of the DNA helix, and the x 
axis perpendicular to it such that the resulting plane is equidistant from 
the DNA and the protein. The rectangle was centered at the origin with 
dimensions 12Å x 8Å, enough to contain the α-helix (Figure 5.) 

This rectangular region was discretized into a 256x256 grid, and the 
distance along the normal axis from each point in the grid to the protein 
surface was calculated. The resulting 2D array of real numbers is in effect 
the native representation of a protein surface patch in our algorithm. 

2.2 Wavelet Transform 
Wavelet transforms were applied on the projected surface patch of every 
HTH protein to transform it into spatially localized frequencies at multiple 
resolutions. The 2D least asymmetric Daubechies filter of order 4 was used for the transformation. No 
analytic form exists for these transformations, and so they were numerically computed using 
Mathematica. 

Daubechies filters are the only locally supported, continuous, and orthogonal wavelet bases, which 
makes them ideal for most wavelet analyses. Different orders were tried and the 4th order appeared to 
give best results (Figure 6.)  

Figure 4: Registration of two molecular 
surfaces. (a) Pre-registration, and (b) post-
registration. 
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3. PCA of Protein Surfaces in Wavelet Space 
Since our HTH proteins of interest come from the same protein family, we expect there to be little 
variation at the DNA-binding surface patch. More specifically, we expect the variations to be localized in 
space, and to depend on the underlying amino acid sequence. 

After the surface patches have been wavelet transformed, we 
applied PCA to find the major axes of variation within the HTH 
protein family. We expect these variations to depend in a 
localized fashion on the identity of the amino acids that give 
rise to the structure in the first place. Thus, by transforming 
the protein surface patches into their principal vectors, we 
reduced their representation into the primary components 
that are affected by the identity of the primary sequence.  

Since the protein surface patches are all at the same scale, variance normalization was not performed. 

Data 
A database of HTH-DNA complexes has been manually built and curated. The complexes were obtained 
from the protein databank (PDB) and filtered to include only structures that contain a DNA molecule 
bound to one of the following motifs: DNA/RNA-binding 3-helical bundle, λ-repressor-like DNA-binding 
domain, and HMG-box. This resulted in an initial database of 160 complexes. Subsequent filtering for 
complexes that are only bound to double-stranded DNA, as well as those that meet homology criteria, 
reduced the final set to 84 complexes. We tested our compression algorithm on those complexes. 

Results 
We wavelet transformed the 84 HTH-DNA complexes as previously described, and compared our results 
to transformations using 2D Fourier transform 
(Figure 7.) On average, the compression ratio 
achieved with wavelets was twice as high for the 
same error level. 

We experimented with varying levels of 
compression during the wavelet transformation 
step and the PCA step (Table 1.) In general we 
found that increasing the number of coefficients 
retained after the PCA step decreases the error 
rate, with a high of 17% error when retaining only 
10 coefficients, and a low of 12% error when 
retaining 150 coefficients, averaged across 
different numbers of wavelet coefficients retained (Figure 8a.) Such a consistent trend was not found 
however when we averaged across the number of PCA coefficients retained, and varied the number of 
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10 0.15 0.22 0.16 0.15 0.18 0.19 0.15 0.15 

20 0.13 0.13 0.13 0.13 0.21 0.14 0.13 0.13 

30 0.12 0.12 0.13 0.12 0.15 0.17 0.12 0.12 

50 0.11 0.11 0.13 0.11 0.15 0.15 0.1 0.1 

100 0.1 0.098 0.2 0.098 0.095 0.2 0.093 0.093 

150 0.1 0.098 0.18 0.11 0.17 0.15 0.093 0.093 

Table 1: Compression Error Rates (RMSD) 
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Figure 6: Representation with largest 50 coefficients using least asymmetric Daubechies wavelets of varying orders. 
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Figure 7: Wavelets vs. Fourier compression. 
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wavelet coefficients retained (Figure 8b.) Increasing the number of coefficients retained during the 
wavelet transformation may have resulted in instability in the behavior of PCA due to increased variance 
in the data. 

Given the experimental inaccuracies inherent in protein structure determination, a resolution of 3Å is 
sufficient for our purposes. Our final compression consisted of keeping 150 wavelet coefficients 
followed by a PCA step where only the top 30 principal vectors were retained. This represents 
approximately 2000 fold compression, with an error level of around 10%. At this error rate features 
greater than 3Å were generally indistinguishable from the uncompressed case (Figure 9.) 

 
 

Future Work 
We believe that achieving a 30-dimensional representation for local surface 
patches represents a significant reduction in the complexity of protein structure. 
Most importantly, such a small number of parameters render the problem highly 
amenable to machine learning methods, where the relationship between amino 
acid sequence and protein structure may be automatically inferred. We will 
explore this possibility in the future, as well as the reduction of DNA surface 
patches and the prediction of DNA-binding partners of HTH proteins. 
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Figure 8: Average error level across (a) different PCA compression levels (averaged across all wavelet compression levels) 
and (b) different wavelet compression levels (averaged across all PCA compression levels.) 

Figure 9: Quality of 
Final Compression 


