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Continually throughout the day, the brain must process incoming visual signals and transform them into appropriate actions, 

namely saccadic eye movements to the most behaviorally salient stimuli. The overarching problem that we address is how to use 

visual information to predict the parts of a scene that are most salient, and more specifically, to predict the targets of saccadic eye 

movements.  

Predicting the targets of saccades is a difficult problem for several reasons.  First, there are many different cognitive 

influences on the saliency of a visual object.  For example, a set of keys sitting on a desk might go overlooked when scanning 

the scene for a coffee mug, but will immediately draw the gaze of a viewer who has been locked out of the next room.  Secondly, 

the saliency of a target is history- and state-dependent: a nearby object will often be targeted by a saccade over a more salient, 

but more distant, alternative.  Finally, although repeated viewings of the same visual stimuli are necessary for data collection and 

proper analyses, saliency changes as objects become more familiar.  

 

Background 
Because of the difficulty in predicting eye movements, the benchmarks described in the literature do not evaluate the ability 

to predict the single most likely saccade target at a given point in time. Instead, the metric used to evaluate a model of saccade 

prediction involves the creation of saliency maps, which are probability distributions over the entire visual scene.  Itti et al. 

evaluated several models including their “surprise metric” by calculating the average saliency of thousands of randomly chosen 

pixels across all frames of a movie, and then calculating the saliencies of the pixels that were actually chosen as the endpoints of 

saccades [1]. The model evaluation, hereafter called the Itti metric, is defined as the fraction of saccade endpoints with saliency 

calculations greater than the average value across the saliency map.  Additionally, Itti et al. used the Kullback-Leibler (KL) 

divergence to describe the difference in the distribution of saccade endpoint saliencies and the randomly chosen pixel 

saliencies.  The best performing model, and the one that we use as a comparison in this study, results in an Itti metric of 72%, 

and a KL divergence of 0.24.  

Research on visual saliency and active vision typically follows one of two approaches: a high-level analysis of objects, 

context, and the "gist" of a scene [2], or a low-level analysis of luminance, contrast, and local contours [1].  We chose to 

concentrate on the ability of low-level visual features to predict saliency. The hierarchical feed-forward model of the visual cortex 

proposed by Serre et al. for object recognition provides a framework for extracting features from a visual scene [3]. The proposed 

model uses biologically inspired filters that have been previously shown to be similar to the spatio-temporal receptive fields of 

visual cortical neurons [4,5]. The superior performance of this model on class-specific object recognition tasks suggests that the 

features it generates may be relevant to saliency prediction. 

Many neural structures involved in planning and executing eye movements, including the frontal eye fields (FEF), superior 

colliculus, pulvinar nucleus of the thalamus, and the lateral intraparietal area, have been characterized as having neural activity 

that reflects the likelihood with which a saccade will be made to a certain region in visual space. Specifically, the FEF has been 

implicated as a visual salience map [6]. Activity in this cortical area underlies both covert visual attention and the preparation and 

execution of saccades. The firing rate of an FEF neuron is believed to describe the saliency of the represented area of the visual 

field. Thus the neural activity of a population of FEF neurons provides a representation of both the amount of attention allocated 

to specific spatial regions of a scene and the instantaneous probability of executing a saccade to each part of space as the scene 

changes over time. Our project includes the analysis of experimental neurophysiological data in addition to image and eye 

position analyses. 

 

Methods 
 For our experimental setup, we collected data from 2 macaque monkeys, which viewed an LCD display during the 

presentation of a grayscale video. The two types of data acquired were eye position data during free viewing and neural data 

from the FEF during fixation. Five 5-10 second movie clips were taken of office scenes, outdoor foot traffic, and moving vehicles 



around the Stanford campus.  A single movie, of an office scene with moving people and chairs, was used for the analyses 

presented here.  The movie’s resolution was 640x480 pixels and was played at 30 frames/second for a total length of just under 

6 seconds. Figure 1 illustrates the two types of data collected and the resulting saliency metrics. 

 

 
Figure 1: Experimental setup and saliency measures used for saccade prediction.  

Eye position data: (left) Gaze targets were tracked as monkeys freely viewed a video. (center) Sample eye position saliency 

map (right) Distributions of eye position saliency for randomly selected points (blue) and saccade endpoints (green) Neural data: 

(left) The electrical activity of single neurons in FEF were recorded while monkeys fixated on a spot and the video was shown at 

different positions relative to the visual receptive field of the targeted neuron. (center) Sample raster plot of neuron spiking and 

corresponding mean firing rate in response to a single location in space throughout the course of the movie (right) Distributions of 

neural saliency for randomly selected points (blue) and saccade endpoints (green) 

 
Eye Position Data 

Eye movement data was collected from two macaque monkeys freely viewing a grayscale movie, which spanned visual 

angles of approximately 42 x 32°. Precise eye positions were recorded at 200 Hz using the scleral search coil technique. A coil of 

insulated, biocompatible wire was implanted into one eye of each monkey such that it moved with the eye. During the task, the 

monkey sat in a magnetic field, and the small currents induced by the changes in coil position were used to determine the 

direction of the monkey’s gaze. 

For each frame of the movie, a saliency map was obtained by overlaying the eye trajectories from all trials and representing 

each gaze target as a small Gaussian (σ = 20 pixels). Gaussians, rather than single points, were used to account for a) any 

imprecision in the eye position readings, and b) the assumption that direction of gaze often indicates salient objects or regions, 

rather than simply salient pixels. Because it takes time for the brain to process an image, plan an eye movement, and execute the 

saccade, the eye position at any time t reflects the movie frame on the screen at approximately t -150 ms.  We therefore shifted 

the eye position maps back in time by 5 movie frames, or 165 ms, so that eye movements would reflect the images that 

influenced them, rather than the images occurring after their completions. Saccade endpoints were defined as the eye positions 

during movie frames following drops in eye velocity below a threshold of 20 deg/sec. 
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Figure 2: Feature Selection. Sample features from a single frame of the video. 

 

Neural Data 

 Monkeys were previously set up for chronic neural recording from the FEF in accordance with National Institutes of Health 

and Society for Neuroscience guidelines. Before each recording, a single tungsten electrode was lowered with a 

micromanipulator into the cortex until neurons were detected and eye movements could be evoked with 100 ms trains of low (< 

50µA) current pulses at 200 Hz. The vector of these evoked saccades defined the site’s response field (RF), and determined the 

part of visual space represented by the neurons that were then isolated and recorded. While the monkey fixated on one spot, the 

movie was played at different positions on the screen such that different patches of the video fell within the RF of the targeted 

neuron. 

 The neural saliency metric of a location of the movie was defined as the average firing rate of the neuron whose RF was 

centered on that region.  We were interested in the neural activity produced by the characteristics of individual frames of the 

movie clip.  Therefore, spike trains were shifted back in time by 100 ms, which is an estimate of the visual latency of neurons in 

the FEF, and were aligned to the image on the screen at that time. 

 

Feature selection 

For feature selection, we used the MATLAB code from Serre et al. available online. Figure 2 shows sample features 

obtained for a single frame of the movie.  The first layer (S1) emulates parafoveal simple cells in V1 via 64 biologically-tuned 

Gabor filters, paired in 8 size bands (ranging from 7 & 9 pixels to 35 & 37 pixels) each containing 4 orientations (0°, 45°, 90°, and 

135°). The second layer (C1), representing complex cells with slight shift size tolerance, generates 32 responses using a 

max-like pooling operation. The change in C1 response between consecutive frames was also taken as an additional 32 features.  

Thus for a given pixel, a total of 128 features were extracted by taking the values of the S1, C1, and C1 difference responses 

corresponding to that pixel. 
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Results 
SVM 

 As an initial pass at saccade prediction, we treated saccade occurrence as a binary categorical variable. Support vector 

machine classification was used to distinguish between saccade endpoints and randomly selected non-gaze targets using the 

128 features [7].  An equal number of pixels were selected for each of the two classes, and 70% were used for training, while 

30% were used for testing. The optimal cost (C) and gamma (γ) parameters for an RBF kernel were found using a grid search 

across several orders of magnitude to select the parameters yielding the highest 10-fold cross validation value. The overall 

accuracy was 72.4 ± 5.2%, but only 54% of actual saccades were predicted as saccades.  By adjusting the weightings of the 

error costs to penalize false negatives more heavily (i.e.: penalize actual saccades that were not predicted), we achieved an 

overall accuracy of 60.3 ± 10.4% but were able to predict 67% of actual saccades. 

 

Regression 

 Saccades are discrete and therefore a binary categorization between saccade targets and non-targets is accurate, but the 

underlying saliency of a visual target is continuous. Our data sets provided us with two continuous saliency measures of regions 

across the movie clip, which allowed us to use regression as a complement to the SVM analysis. The first set of saliency values 

came from the pixel intensities of the eye position maps for each frame of the movie (Figure 1, top, center). The second set of 

continuous saliency labels was produced by the neural data: the instantaneous firing rate of an FEF neuron in response to the 

presentation of a movie frame is thought to indicate the saliency of the part of the image within the cell’s RF (Figure 1, bottom, 

center). 

 In the first regression, a vector x of 128 features was calculated (as described above) for each of 20 evenly-spaced pixels 

across each frame of the movie clip.  The label y was the luminance intensity of the corresponding pixel in the eye position 

saliency map, which was in the interval [0,1].  In the second regression, the training data x was confined to the pixels at the 

centers of the FEF RFs, and the labels y were the firing rates, normalized to the interval [0,1].  After learning the feature weights 

θ using each of these two training sets and their respective labels, these weights were used to calculate the predicted saliencies 

of pixels in two different test sets: a grid of pixels across all frames of the movie clip, and the pixels that were actually endpoints of 

saccades. 

 

 

where x( I ) = S1, C1, C1 difference map values for pixel i 

y( I )  = saliency value for pixel i                                

 
 

 
 Using the weights learned with the eye position saliency map labels, 71% of saccade endpoint pixels had calculated 

saliencies greater than the average pixel saliency (Figure 1, top, right).  This result was similar to the number published by Itti et 

al. (72%).  The Kullback-Leibler divergence comparing the distribution of saccade endpoint saliencies to the randomly chosen 

pixel saliencies was 1.90, much greater than Itti’s value of 0.24.  Using the weights trained on the neural data, 59% of saccade 

endpoints had greater calculated saliencies than the average pixel, and the Kullback-Leibler divergence was 0.54 (Figure 1, 

bottom, right). 

 

Discussion 
Natural vision is an active process which involves two concurrent, interdependent subprocesses: decoding of visual 

information, and decision of the most relevant, or salient, parts of the visual world.  Our results corroborate and extend recent 

studies on visual saliency that have explored the sufficiency of biologically plausible low-level visual features to explain what is 

salient.  This suggests that high-level, global image analysis and saliency prediction is not necessary to account for and predict a 

significant level of visual saliency. The results of our eye position and saccade analyses can be directly compared to the recent 
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results published by Itti et al.  Using various machine learning techniques, we have achieved comparable, and sometimes 

superior, results in predicting the salient parts of a visual scene. Similarly, because saliency drives the guidance of saccadic eye 

movements, we are able to predict the endpoints of saccades at least as well, and in some cases better than, previous studies.  

We do not suggest that the brain is able to execute the types of machine learning algorithms described here. We as 

researchers use these algorithms to determine the relationship between image features, neural activity, and eye movements, but 

these relationships do not necessarily need to be learned from scratch by the brain. Neuroanatomical connections between 

visual cortex and the FEF are present from birth, and thus the only learning necessary in the brain is a tuning of the weights of the 

synapses underlying these hard-wired connections. If moving the eyes appropriately to salient objects leads to a reward in one 

form or another, the learning of synaptic weights might be accomplished through a form of reinforcement learning. Considerable 

recent work has shown that reinforcement learning does in fact occur in the brain, and that the neurotransmitter dopamine might 

underlie this process. 

Our results bolster the argument that the primate frontal eye field (FEF) serves as a saliency map in the brain, and that 

neural activity in this area appears to be informed by low-level visual cortex, not purely by cognitive processes, complex objects, 

and global features. According to several computational models of visual cortex (such as the dynamic routing model), the visual 

cortical hierarchy receives feedback from a high-lever structure reminiscent of a saliency map.  It is known that neurons from 

FEF synapse directly onto visual cortex in a spatially-specific manner, suggesting feedback from the saliency map onto the 

incoming feature maps. To our knowledge, no existing model includes this type of feedback in the calculation of visual saliency or 

prediction of eye movements. Our model can be extended to include feedback from the saliency map onto the feature detectors, 

modulating the signals on future frames.  It is possible that including such biologically-inspired dynamic control over the feature 

detectors could improve saliency prediction. Additionally, several models of object recognition and eye movements include the 

importance of high-level visual features, such as geometric shapes, complex objects, and global features.  By including 

additional layers of processing in our model of visual cortex, and by implementing feedback from these layers onto the lower 

levels, it would be possible to model the influence of these high-level features on the formation of the saliency map.  

An alternate approach to predicting visual saliency considers a hidden Markov model (HMM), in which hidden states are the 

true saliencies of the pixels of an image and the observations are 1) the visual features produced by the image, 2) the neural data, 

and 3) the eye position data.  By using expectation maximization, we could simultaneously determine the optimal state transition 

probabilities and the mean observations produced by each state. These results would provide further insight into the relationship 

between saliency and neural activity, eye movements, and visual processing. 
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