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K-MEANS FOR NETFLIX USER CLUSTERING 

 

I. Introduction and model 

In the Netflix collaborative filtering problem, the goal is –  

given a set of training data ( ){ }iiii rtmux ,,,=  consisting of 

a sample of prior movie ratings ir  (an integer from 1 to 5) 

associated with user iu , movie im , time it  – to 

accurately predict the rating that should be associated 

with a new point ( )mu, .  As part of a larger Stanford 

effort, we seek to use k-means to cluster users with 

similar movie preferences. 

Intuitively, this means that users have intrinsic user types 

wherein all users of that type have aligned preferences 

across all movies, and furthermore that individual user 

vectors of that type reflect choosing from some unknown 

distribution specific to the user’s class.  The variance of 

ratings for any particular movie for users within a class 

can be interpreted as the natural variation of user ratings 

given known absolute preferences for a movie.  As 

opposed to the Mixture of Multinomials group (c.f. 

project by Dimitris, Hau Jia, and Raylene), we make no 

assumptions about the underlying model other than the 

most basic premises: that users rate movies in a 

predictable way and that for a given user, different movie 

ratings are not all conditionally independent. 

More formally, each user has a vector of ratings over all 

movies 
n

x ℜ∈*  which comprises the hypothetical 

ratings that the user would rate each of the 17770 

movies in the Netflix library.  The Netflix prize ratings 

database provides incomplete user vectors, 
di

x ℜ∈)(
 

with nd ≤ , that are the projections of the complete user 

vectors x(i)* onto some arbitrary lower dimension d.  It is 

usually the case that d << n, with an average across the 

training set of ≈d 200. Furthermore, d varies with each 

user i as it is not the case that all users have rated the 

same number of movies nor have all users rated the 

same set of movies. 

Our original motivation in pursuing k-means was to 

perform linear regression within clusters, although the 

scope of clustering a dataset of this scale and sparsity 

proved enough of a challenge.  K-means is also an ideal 

unsupervised method for classifying users in the vast 

Netflix data set because it converges extremely quickly 

in practice. 

The method of k-means as applied to incomplete user 

vectors x(i) ’s is as follows: 

1.) Initialize cluster centroids by one of two methods: 

a. Assign 
)()2()1( ,...,, kµµµ  to k randomly chosen 

x(i) ‘s. 

b. Or use the heuristic described in the k-means++ 

paper† 

2.) Repeat until convergence: 

a. Let ),(maxarg: )()()( ji

score
j

i
xfc µ=  for all i, 

where ()scoref  is a scoring function described in 

more detail later. 

b. For each j, let 
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for l = 1, …, n; 
ni

lx ℜ∈)(ˆ is x(i) projected from 

nd a , with all added dimensions padded with 

0’s, in effect ignoring incomparable ratings 

where either the centroid or the user is missing a 

rating for movie l. 

The objective maximized in this case is: 
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For comparison, the traditional method of applying k-

means to a sparse data set is to fill in missing vector 

elements with default values. Furthermore, k-means is 

typically formalized as minimizing a distortion function 

that represents either the angle between vectors (cosine 

similarity) or the Euclidean distance: 
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†
 Arthur, David and Vassilvitskii, Sergei.  “k-means++: The 
Advantages of Careful Seeding.”  To appear in SODA 2007. 
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Figure 1. Left: a graphical depiction of a cluster; movie id’s are on the y-axis; users along the x-axis; *’s represent the presence of a rating 
for a particular user and movie.  Right: a typical distribution of clusters; k=30; number of users = 480; scoring function used was MMP 
continuous (see below) 

 

We will explain why this cannot be applied to the Netflix 

data set (without some tweaks) in the section on scoring 

functions.   
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Figure 2. Data set size. 480,000 users.  Scoring function. MMP 
continuous.  k=10. Notes. Shown is the distribution of one 
cluster. The tail of the distribution is not shown. 

 II. Parameters: 

The parameters investigated in this project are the 

number of clusters k, heuristic initialization (h), and the 

scoring function ()scoref . 

 

II.a. The effect of heuristic initialization (h) 

The k-means algorithm is dependent on the initial 

centroids and as such is not guaranteed to discover the 

global optimum.  That is, the quality of the clusters, as 

quantified by the objective function described earlier, is 

highly variable for different trials. A common method to 

overcome this is to run the algorithm multiple times with 

different initial centroids and return the best clustering 

found. Since clustering on the complete Netflix data set 

is computationally expensive, it is beneficial to start with 

clusters chosen by some heuristic so as to speed up 

convergence while also guaranteeing the quality of the 

resulting clusters.   

%(Size) is the number of users in the cluster 
%(Span) is the number of ratings spanned by all users in the cluster 
%(Overlapping) is the number of ratings rated on by two or more users 
%(Outcasts) is the number of users who share no movies in common with other users 
%Result of KMeans with k = 30 run on training set 1000x_smaller_training_1.dat 
Cluster    Size       Span       Overlapping    Outcasts 

0          18         1304       314            2 

1          9          721        26             0 

2          20         2094       962            0 

3          14         730        127            0 

4          30         3638       1879           0 

5          1          995        0              1 

6          12         1406       315            0 

7          16         733        179            0 

8          24         996        318            0 

9          21         2626       1246           0 

10         14         1396       334            0 

11         16         1566       460            0 

12         19         2738       1386           0 

13         11         654        128            1 

14         6          869        153            0 

15         16         2174       967            0 

16         4          691        17             0 

17         36         3289       1760           0 

18         15         2625       750            0 

19         11         793        131            0 

20         44         3168       1448           0 

21         12         834        183            0 

22         15         1338       374            0 

23         10         786        213            0 

24         6          939        107            0 

25         36         2898       1709           0 

26         3          1375       86             0 

27         21         2720       1269           0 

28         11         1899       467            0 

29         9          740        138            0 

Examining cluster 20...  Number of users: 44 
    6:                                    *        

    8:  *                                 *        

   18:                            *                

   28:         *                       *           

   30: *    *  *        *     ** **    * *     *   

   38:                                 *           

   39:                                 *           

   44:                                 *           

   52:  *                                 *        

   55:                                 *           

   58:                                 *           

   77:                                 *           

   81:                                 *           

   83:          *                                  

   84:                  *              *           

   97:                        *                    

  108:              *         *   *                

  111:                        **  *    *           

  113:                                    *        

  118:                                    *        

  138:                                       *     

  143:          *                 *    *           

  148:   *  *                 *                    

  166:     *                                       

  175:          *         *     * *    * **        

  176:                               *             

  181:   *                                         

  187:                            *    *           

  189:                                 *           

  191:    *      *    * * *   ** ** *  ***         

  196:                              *              

  197:    ** * ***                *    *    * *    

  199:                       *    *    *  *        

  209:           *                                 

  216:                                 *           

  241:         *          *       *  *             

  246:           *                                 

  248:                                  *          

  … 
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Heuristic initialization as described in the k-means++ 

paper† was implemented for these purposes.  At least in 

theory, carefully choosing initial centroid values has the 

advantages of reducing the number of iterations until 

convergence and of guaranteeing a clustering that is 

relatively consistent when repeated. The heuristic assigns 

the first centroid by choosing a user randomly. For each 

successive centroid, it chooses a user with probability 

proportional to its Euclidean distance to centroids that 

have already been assigned. The motivating idea is to 

choose centroids that are maximally distinguished from 

each other leading to more meaningful clusters on the 

first iteration. The results are compared with the 

standard method of initialization whereby k user vectors 

are selected randomly from the data set and used as the 

initial centroids. 
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Figure 3. Data set size. 4800 users.  Scoring function. MMP 
continuous.  Notes. Number of iterations capped at 25. Each 
data point is the average over 5 trials run on different data sets. 

 

According to the data (Figure 3, 4), k++ heuristic 

initialization decreases the number of iterations until 

convergence for all k and m.  This implies that the 

heuristic starts the algorithm off with centroids closer to 

ideal than a random selection of users. 

 

                                                 
†
 Arthur, David and Vassilvitskii, Sergei.  “k-means++: The 
Advantages of Careful Seeding.”  To appear in SODA 2007. 
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Figure 4. Scoring function. MMP continuous.  Notes. Each data 
point is the average over 3 trials run on different data sets. 

 

II.b. Choosing the right scoring function f
score

() 

To preamble our discussion of scoring functions, we will 

start by explaining why the traditional method of filling 

incomplete vectors with default values fails in this 

application.  Density (or sparsity, as is the case here) of 

the training data determines the ratio of default values to 

actual ratings.  For the Netflix data set, which is 

approximately 1% dense, there are about 100 default 

values for every actual rating.  Depending on the size of 

the training set m and the number of clusters k, the 

centroid vectors are filled with a significant proportion of 

default values unless m is large or k is small.  This allows 

comparisons between two default values, which 

represent the maximum similarity attainable by either 

Euclidean distance or cosine similarity.  Since scoring 

functions like Euclidean distance or cosine similarity 

make no distinction between faux values and real values, 

the resulting signal to noise ratio is very low.  The 

number of such comparisons between default values is 

related to the density of the centroid, a measure of which 

can be found in a statistic we call the span.  The span 

represents the number of movies in a cluster that have 

been rated by at least one person.  Even if an attempt is 

made to improve the signal to noise ratio by decreasing 

the weight of default values, a significant problem still 

remains.  It turns out that user vectors will always try to 

maximize the number of comparisons between default 

values since these achieve perfect similarity, i.e. result in 
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a Euclidean distance of 0 or a cosine similarity of 1.  

Thus, unless the span covers virtually the entire set of 

movies, the clustering is utterly useless (see figure 1 for 

a typical clustering using k-means with default values). 

The modification to k-means as implemented in this 

paper can be viewed as assigning a similarity score for 

each pair ),ˆ( )()( j

l

i

lx µ .  Non-comparable pairs – which 

will be defined in this context as any pair where either 
)(ˆ i

lx , 
)( j

lµ , or both are missing – are given a similarity of 

0.  On an intuitive level, this represents the default 

condition whereby no inferences about similarity can be 

drawn.  Then for comparable pairs, the scoring function 

returns a value that rewards (a positive similarity) for 

rating differences within a certain threshold, and returns 

a value that penalizes (a negative similarity) for rating 

differences that exceed the threshold. 

Four scoring functions were evaluated for clustering 

quality and secondarily for the root mean squared error 

(RMSE) of predictions made.  The prediction for user i at 

movie j, given by *)(i

jx ,  is calculated by using the 

closest centroid’s rating, 
)( )( i

c

jµ , if it exists, or resorting 

to an average rating calculated over the entire data set 

(an average adjusted by the average over the user and 

the average over the movie). 

 

II.b.i. Mismatch penalty (MMP) using a discrete scoring 

function 

The problem of matching sparse user vectors to ideal 

clusters is analogous to that of sequence alignment for 

DNA or RNA.  In the case of sequence alignment, a given 

pair of bases under consideration can be assigned a 

score via a scoring matrix, which contains a pre-

enumerated grid of all permutations of the 4 possible 

bases with scores reflecting their similarity or affinity. In 

protein sequence alignment substitution matrices like 

PAM or BLOSUM serve the same purpose for scoring 

evolutionary sequence divergence. Drawing our 

inspiration from these methods, we wrote our own 

scoring function that takes as input the absolute value of 

the difference between a user rating and a centroid 

rating, discretizes it to integral values, and returns as 

output a number reflecting the similarity of the two 

ratings.  The crucial insight we made was to treat the 

non-comparable case as a baseline from which to reward 

for small mismatches and penalize for large mismatches.   

The motivation behind a discretized scoring function is 

to compensate for the granularity of user ratings.  That is, 

if for example the centroid rating is 3.5, the user rating 

(an integral value) can be at best 3 or 4, yielding an 

absolute difference of 0.5.  A scoring function that is 

discretized in the same increments as the user ratings 

returns consistent scores even if the centroid ratings 

fluctuate somewhat. 
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Figure 5. Data set size. 4800 users.  Scoring function. MMP 
discrete.  Notes. RMSE for predictions made both within and 
outside of span. Each data point is the average over 4 trials run 
on different data sets. 

 

II.b.ii. Mismatch penalty (MMP) using a continuous 

scoring function 

Although discretization works quite well, it also has its 

disadvantages, namely that the arg-min of a step-

function is a range, rather than a single value.  

Theoretically, this translates to a “looser” clustering, 

since a difference in ratings of as much as 1 is tolerated 

(or more accurately, rewarded).  An ideal continuous 



Submitted by Brian Sa and Patrick Shih for CS229 Fall 2006 

scoring function would address this shortfall while 

maintaining the characteristics of the mismatch penalty 

scoring system. 

2)1ˆ(),ˆ( 2)()()()( ++−−= j

l

i

l

j

l

i

lousMMPcontinu xxf µµ  

This scoring function was constructed to fit the following 

specifications: 1) it must return 1 if the scores match 

exactly, 2) it must assign a negative penalty for any 

absolute difference exceeding 1.0, and 3) it must assign 

increasingly negative penalties for larger absolute 

differences.  It is interesting to note that as originally 

constructed, ()ousMMPcontinuf  was a cubic function; 

however, this proved too penalizing for large absolute 

differences in ratings and the algorithm did not converge.   

The MMP Continuous scoring function was in fact able to 

achieve tighter clusters, as can be seen from its testing 

RMSE for k=50 (Figure 6).  However, it was also sensitive 

to values of k that were too high. 
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Figure 6. Data set size. 4800 users.  Scoring function. MMP 
continuous.  Notes. RMSE for predictions made both within and 
outside of span. Each data point is the average over 4 trials run 
on different data sets. 

 

III. Discussion 

The ultimate goal of the Netflix prize is to minimize the 

RMSE for predictions.  However, it is evident that k-

means as the sole method for rating prediction, as 

compared to the current leading predictive algorithms, is 

limited at the current values of k and m (number of 

users).  We expect that prediction will improve 

significantly as k and m increase (k > 1000 on all 

480,000 users) because specificity increases 

proportionally to k.  Further, the sparsity of the data 

places a constraint on the minimum size of a cluster.  We 

must ensure a sufficient span to make valid predictions.  

Thus, increasing k requires a proportional increase in m.    

If indeed a high value for k is required for optimal 

prediction, this implies that current values of k will have 

high bias, and this is borne out.  The training error and 

generalization error on k-means run for constant k=10 

and increasing m indicate that our algorithm is 

underfitting the data.   
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Figure 7. Scoring function. MMP continuous.  Notes. RMSE 
calculated for predictions within the span of the centroid. Each 
data point is the average over 3 trials run on different data sets. 

 

IV. Future work 

Continuing forward, a short term goal is to tune the 

parameters of the MMP Continuous scoring function for 

optimal clustering.  Long term goals include proceeding 

with linear regression within clusters and utilizing 

information contained in movie content (such as from 

www.imdb.com) to improve performance. 
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