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I. Introduction 
After genome sequence is revealed, it becomes the significant issue to discover the 
function of genes. The transcriptional regulatory network (TRN), which describes 
interactions between genes, is the key point to reveal the function of genes. The TRN can 
be constructed from the experimental data such as gene expression microarray data. 
Many computational and statistical methods using various resources have been studied to 
construct the TRN. But none of them is quite successful because biology system is very 
complex and its experimental results are affected largely by environment and noise. For 
example, supervised learning approaches using SVM by Qian et. al.[Qian2003] is robust, 
but it does not consider network features by multiple TFs. Bayesian network approach by 
Friedman et. al.[Friedman2000] finds network structure, but it is based on joint 
probabilities which are hard to be obtained from small number of training sets.  
In this project, we would like to provide network learning model using SVM and 
compare it with the previous SVM approaches. 
 
II. Data Sources 
Collecting Data 
We used 643 microarray expression data sets for yeast 
which were collected and pre-processed by Stuart et. 
al.[Stuart2003]. We collected 3430 confident 
regulatory pairs from Proteome Database[Proteome]. 
Since this database is based on literatures and curated 
by human, it is highly confident. For biological 
validation, we used the most recent ChIP-chip 
experiment data by Harbison et. al.[Harbison2004]. We collected 5821 binding pairs with 
P-values less than 0.001. 
Processing Data 
We excluded genes which have missing data points more than 30%. We only considered 
5940 genes among total 6646 genes. For 5940 genes, there are missing data points of 
1.3%. Since it is statistically low enough, the missing points are set as zeros. 
Considered Transcriptional Factors 
Since the database has more TFs which are not considered ChIP-chip experiments, direct 
comparison between the database and ChIP-chip experiments is not fair. Therefore, we 
only considered 187 common TFs of the both sides.  
 
III. Classification using SVM 
Training Sets 
We chose 1563 confident pairs, which have common TFs with ChIP-chip data, from the 
database as positive training sets. Negative training sets are chosen randomly excluding 
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pairs of the database. Because of the imbalance problem, it is common to choose 10 times 
more negative sets than positive sets[Qian2003]. But considering computing time, we 
chose 3 times more negative sets. 
Features and Kernel 
Qian et. al. concatenated data points of the TF and the target gene and made a feature of 
double data points. To model co-expressed patterns and reduce the dimension of a 
feature, we made a feature vector by multiplying data points of the TF and the target gene 
of the same experiments. Then, we used a simple linear kernel. Let 
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i . Then the feature vector and kernel is like below. 
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IV. Learning Transcriptional Factors using SVM 
Review of Previous Approaches 
As shown before, the pure supervised classification does not work well. One of the 
possible reasons is that it cannot model regulations by multiple TFs. To model multiple 
TFs and complex networks, Bayesian network learning with posterior probabilities is 
commonly used[Friedman2000]. But the Bayesian approach is not successful because 
there are not enough data sets to get posterior probabilities confidently. We need to 
combine robustness of SVM and network learning of the Bayesian networks. 
Modeling Multiple TFs: Features and Kernel 
Let a gene 
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t
1
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operations, we need to consider all co-expression patterns,   
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It is hard to get the exactly same expression with the above, but we can get the similar 
expression easily like below. 
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Let 
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By taking a kernel 
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we can get expressions like the equation (4). Finally, 
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If two genes have different number of bound TFs, we can match the dimension by 
repeating average of other TFs. 
Learning Classification Boundary using SVM 
Using the above kernel and training sets of III, we can learn classification boundary. The 
prediction function with learnt parameters can calculate a confidence score for a test 
sample.  



Learning TFs using SVM 
TFs bound to a gene can be learnt using a greedy algorithm. Let 

  

P(g,T)  be the prediction 
function for a gene 

  

g  with a set of TFs 

  

T . 
1. Initialize 
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maximize the score. 
3. If Score < ! "MaxScore , update 

  

Tg := Tg ! t
*{ },  Score = MaxScore , and 

repeat the step 2. Otherwise, the algorithm is finished.  
It is the similar approach with works by Friedman et. al., but there are two different 
points.  One is that we are using confident scores instead of posterior probabilities, and 
the other one is the reduction factor ! . It compensates effects of multiple TFs which 
regulate genes independently.  
 
V. Results 
The following tables shows testing results for the pure SVM and SVM network learning. 

 Pure SVM NL SVM(N=3) 
Training Sets 

Positive/Negative 1563/1563x3 710/710x3 

Test Sets 730497 5940 
Positive Results 53099 8851 

Coverage for  
5011 ChIP-chip data 870(17.36%) 182(3.63%) 

True-positive 1.64% 2.06% 
In the pure SVM, 1563 pairs are chosen from the database as positive training sets and 
4689 pairs are chosen randomly as negative sets. 730497 candidate pairs between 123 
common TFs and 5940 genes except self-regulation are tested. As results 53099 pairs are 
determined as true regulation pairs. Among them, 870 pairs are included in ChIP-chip 
data. Its true positive rate is 1.64%. SVM network learning is used for up to 3 TFs. 
Positive training sets are chosen from the database. If a gene has more than 3 TFs, 3 
mostly correlated TFs with the gene in the sense of gene expression are chosen. Negative 
training sets are chosen randomly with similar distribution as the positive sets. 5940 
genes are tested. As results, 3663 genes have one TF, 1633 genes have two TFs and 639 
genes have three TFs. Among total 8851 pairs, 182 pairs appear in ChIP-chip data. Its 
true positive rate is 2.06%.  
For both methods, the true positive rate is too low. It is mainly because ChIP-chip data 
and the database don’t show a good correlation in the view of the gene expression 
profiles. As shown in Figure 1, score distributions between ChIp-chip and Random pairs 
are similar. Another reason is the gene expression profile used as features does not 
indicate clear difference between positive and negative training sets. As shown in Figure 
2 and 3, correlation coefficients of positive sets and negative sets have similar 
distribution. Even though their average is slightly different, it is not enough difference for 
genome-wide prediction. One possible reason is that the gene expression data is old. 
They were measured in 1999 and 2000 with old method, which has lots of noise.  
 



 
Figure 1. Score distributions for ChIP-chip, Database and Random pairs in the pure SVM 

 
Figure 2. Correlation coefficient distribution of gene expression for ChIp-chip, Database 

and Random pairs 
 



 
Figure 3. Correlation coefficient distribution of gene expression for positive and negative 

results from the pure SVM methods 
 
VI. Conclusion 
As shown before, three data sources, the knowledge base, gene expression data and ChIP-
chip binding data are less correlated. For those uncorrelated data sets, the supervise 
learning does not show good performance. For future works, we can test other machine 
learning methods for gene expression data and compare with ChIP-chip data. It will 
verify the performance of machine learning methods. 
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