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1 Introduction

A number of researchers have theorized that the brain may be employing some form of hierarchical
model of features in visual processing. Nodes at the bottom of the hierarchy would represent local,
spacially-oriented, specific features, while levels further up the hierarchy would detect increasingly
complex, spatially-diffuse, and invariant features, with nodes in the uppermost layers corresponding
to invariant representations of objects and concepts. For example, Mumford and Lee have outlined
such a system employing hierarchical Bayesian inference to combine sensory input at the lowest
levels with feedback from priors higher up [7].

Models have been developed based on the idea of sparse coding that seem to mimic many of the
observed features of area V1 in the visual cortex—the lowest layer of the hierarchy. Specifically, we
assume that natural images can be represented as a sparse linear combination of over-complete basis
functions. Using unsupervised learning techniques and optimizing for sparseness, Olshausen and
Field succeeded in generating such a set of bases that resemble the localized, oriented lines detected
by simple cells in V1 [8]. Bell and Sejnowski used independent component analysis (ICA) and the
infomax principle—maximizing the information preserved by the decomposition—to produce bases
with similar characteristics [1].

These models are good as far as they go, but they cannot be readily extended to generate
higher layers. In particular, we have assumed that the data is a linear combination of independent
components, which limits the complexity of the structure that can be captured. Simply generating
a new sparse code for the output of the first layer yields no new information.

2 Topographic ICA

Several related algorithms have been developed that attempt to extend Bell and Sejnowski’s ICA to
capture additional, non–linear structure by relaxing the independence assumption. I have primarily
experimented with topographic ICA, a model proposed by Hyvärinen et al [5]. The basic idea is to
group ICA bases into neighborhoods, such that components within a given neighborhood tend to
be simultaneously active.

Let x = As, as in the usual ICA model, where x is the observed data and s the hidden, mixed
sources. The si are optimized for independence, so little correlation exists between their actual
values. However, we can capture the idea of simultaneous non-zero values through their energies
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We slightly relax the independence assumption of ICA and assume that the correlated energies
within a neighborhood are due to the influence of a further layer of independent latent variables u
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that determines the variances of s. Hidden variables uj are mixed with neighborhood weights hij

and fed through a nonlinearity φ to determine the variance σ2
i of si:

σi = φ(
∑

j

hijuj)

si is then generated as si = σizi, where the zj are mutually independent variables with the same
distribution as sj with unit variance.

Figure 1: Topographic Independent Component Analysis. Independent sources u are mixed by
neighborhood and run through a non-linearity φ which determines the variances of s. The si are
then mixed as in standard ICA.

The si are then conditionally independent given their variances, but are dependent due to
relations between variances. Within neighborhoods components are uncorrelated

E{sisj} = E{zi}E{zj}E{σi}E{σj} = 0

but will tend to have correlated energies since
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The covariance of σi and σj is
∑

k hikhjkvaruk which is positive if si and sj are in the same
neighborhood. Constraining φ to be monotonic, then φ2 is too, so applying φ2 the covariance is
still positive, so cov(σ2

i , σ2
j ) is positive, which implies the above equation [5].

Derivation of the learning rule is complex but is worked out in [5]. Learning is done using a
gradient. For simplicity in the calculations φ is chosen to be φ(x) = x−

1
2 .

3 TICA Results

I experimented extensively with the neighborhood function and to a lesser extent with the non-
linearity. As noted in [5], with sufficiently large, overlapping neighborhoods and enough bases,
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Figure 2: Topographic ICA with a 3 by 3 neighborhood. Neighborhoods resemble complex cells in
that they exhibit phase invariance as well as limited in rotation and translation invariance.

components become group by orientation, and neighborhoods resemble the receptive fields of V1
complex cells. The exhibit phase invariance as well as limited translation and rotation invariance.

Large neighborhoods and more bases result in better defined neighborhoods, whereas smaller
numbers of bases or tiny neighborhoods, such as the linear topography below, result in irregularities,
fault lines of abrupt changes in basis orientation, etc. This appears to be due to limitations in the
model, namely forcing components to fit the predefined topography or using too few bases to cover
the image space, rather than any real correlations: such disjunctions become increasingly rare with
more components and larger neighborhoods. Nor do they appear if the neighborhoods are disjoint,
a special case of TICA known as independent subspace analysis [4].

More exotic neighborhoods including those with mixtures of positive and negative weights do not
appear to add anything. They may even cause the bases to decay into gibberish with no discernible
features (strange topography generally violates the assumptions of the algorithm). Adjustments
in the nonlinearity also do not qualitatively change the results, although this function is highly
constrained in its form due to technical issues in the learning rule. In general, the model is difficult
to modify or generalize due to difficulties with intractable terms in learning.

I had hoped that creative fiddling and adjustments might allow learning of more interesting
features, e.g. corners, but I think that would require an entirely new model, at least for the natural
images I trained on. It is possible that artificial images with more distinct edges and corners would
discover such structure. I experimented briefly with a further generalization of TICA proposed by
Karklin and Lewicki [6] allowing much more general mixtures of the second layer of latent variables,
but as hinted at in their paper, convergence can be tricky, and using their own code from Karklin’s
website, I was unable to reliably train the model. Even in the best of cases, results are extremely
difficult to visualize.
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Figure 3: Topographic ICA with a linear 1 by 3 neighborhood, wrapping around to the next row.
Some structure is discernible, but there is not enough overlap between neighborhoods to really
bring it into relief.

4 Markov Random Fields and Future Work

One issue with TICA is that both the topography and weights must be specified a priori, forcing the
user to guess what might be interesting and then forcing the data to conform to that model. This
recently led me to begin experimenting with Markov random field models in the hope of learning
optimal neighborhoods and weights. Learning is slow, but Hinton et al’s contrastive divergence
algorithm makes models of this scale and type practical [2, 3, 9]. [2] briefly describes an experiment
that appears to produce results similar to TICA.

Figure 4: Markov Random Field model.

MRF models also offer huge advantages in extendibility over hierarchical ICA models. Whereas
the second layer in TICA was laboriously constructed and is difficult to generalize, MRFs can, at
least conceptually if not practically, be extended to arbitrary depths with only slight modifications.
Given that oriented edges have emerged as bases with a number of different objective functions—
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sparseness, mutual information, predictability, etc.—it is likely that similar components can be
learned with an appropriate MRF model, yielding a unified framework for the entire hierarchy.
As of now, I have completed only highly simplified proof of concept: treating ICA output as
probabilities of binary MRF variables, I can reproduce some of the correlations revealed by TICA,
although with far less sparsity in the connections. However, this model appears to offer much more
promise.
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