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I. INTRODUCTION 

 

A Botnet [1] is a large collection of compromised 

machines, referred to as zombies [2], under a 

common Command-and-Control infrastructure 

(C&C), typically used for nefarious purposes.  

Botnets are used in a variety of online crimes 

including, and not limited to, large scale DDoS 

attacks, Spam, Click Fraud, Extortion, and Identity 

theft.  The scale and geographical diversity of the 

machines enlisted in a Botnet, coupled with easily 

available source code, and support from 

communities, as well as mercenary Botmasters 

providing Botnet services for rent, have resulted in 

Botnets becoming a highly sophisticated and 

effective tool for committing online crime in recent 

times [3][4]. Botnets with thousands and millions 

of nodes have been observed in the wild, with 

newer ones being observe every day [10]. 

The lifecycle of a Botnet is depicted in 

Fig.1. The initial enlisting occurs by exploiting a 

known vulnerability in the Operating systems 

running on the machines using a wide variety of 

mechanisms like worms, Trojans, P2P file sharing 

networks, and exploits of common Windows 

vulnerabilities, etc.  Once compromised, the bot is 

programmed to connect to a central location 

(typically an IRC [11] server), where the Botmaster 

could login and issue commands to the logged in 

bots. This mechanism essentially means that the 

communication is free, as broadcast is taken care of 

by the IRC channel. Most Bots additionally ship 

with multiple IRC and DNS addresses, meaning 

taking down one such IRC channel does not in 

general impair the activities of the Botnet. 

 Originally, most techniques to thwart 

Botnets have been reactive, reducing their 

effectiveness significantly, e.g. using Honeypots to 

trap and study malware, etc. Of late, significant 

research has been made into the dynamics of a 

Botnet, and more proactive techniques have been 

suggested [5] [6] [7] [8]. A wide variety of features 

and watermarks for network activity are employed 

to predict Botnet activity, including TCP syn 

scanning, DNS monitoring, and extensive models 

of Botnet attack and propagation [9]. Despite all  

 

 

these concerted efforts, Botnets remain an unsolved 

problem for the online community.  

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 1. Botnet in action 

 

II. DATA 

 

We had two separate data sets to collect for the 

purpose of our experiments. The first set included a  

large number of binaries/executables labeled as 

botnet binaries and benign binaries. We acquired 

the botnet binaries from the computer science 

department at John Hopkins University. This is the 

same data they used for botnet related work [18]. 

As far as the benign binaries are concerned we 

randomly picked them up from Unix and windows 

machines, namely from /usr/bin and from windows 

system32 directory. This data was comprehensive 

and well represented. 

We also needed labeled IRC logs for our 

experiments. While benign IRC logs are easily 

available on the web, botnet affected IRC logs are 

not readily available because of privacy and legal 

issues. The benign IRC logs were collected from 

several publicly available IRC logs from IRC 

channels like Wikipedia, linode, and 

kernelnewbies. These represent a diverse collection 

of logs, with different purposes. Some of these logs 



also have automated bots for channel maintenance 

operations.  

              Obtaining malicious IRC logs proved to be 

extremely hard. There are several independent 

Security forums who actively track botnets [12]. 

They monitor and mine Botnet IRC logs for 

analysis and mitigation. Due to privacy and security 

issues, we were unable to obtain this data, which 

clearly represents a rich set of real world Botnet 

IRC logs, and which would have definitely 

provided more qualitative as well as quantitative 

results. Several other potential sources setup their 

own private infrastructure for collecting such 

training data [5]. 

              Nevertheless we acquired data from 

Northwestern University where the department of 

CS is conducting research on wireless overlay 

network architectures and botnet detection [7]. The 

data regarding botnet IRC logs was not 

comprehensive in the sense that it was IRC traffic 

over a small amount of time. A larger and more 

comprehensive dataset could have established our 

results and hypothesis more conclusively. 

 

III. APPROACHES 

 

 . 

We tried a 2 stage approach to solve this issue. 

These methods are complementary and we can 

combine them for better results. They are as 

follows: 

 

3.1 Botnet Binary Detection 

 
There are several stages in the lifecycle of a Botnet 

where a Machine learning based solution can be 

deployed to thwart its effectiveness. During an 

early stage, a Binary detection and classification 

system can warn of a potentially malicious 

executable which might endanger a host machine. 

There has been some work already in this area [7] 

and we leverage on top of their work to classify 

Botnet executables which propagate as worms on 

networks scanning for vulnerable machines for 

infecting them, and enlisting them into the Bot 

network. 

Unlike Virus scanners like Norton AV, or 

McAfee, a Machine learning solution can perform 

this classification without the need for explicit 

signatures. Identifying such binaries without 

explicit signatures needs recognizing common 

features and correlations between these binaries, 

e.g. a Botnet executable will be a self-propagating 

worm with a simple IRC client built in. Presence or 

absence of such a feature is an indicator that such a 

binary might potentially be a Botnet executable. 

We used supervised learning techniques on groups 

of benign executables vs. Botnet executables.  

 

3.1.1 Features 

 

We are focusing on binary profiling, and hex 

dumps for feature extraction. Identifying the strain 

of these binaries might also give an insight about 

the location of the Command-and-Control center 

and about the botnet capabilities in general. We 

used n-grams (more specifically 4-grams) of 

hexdump of the binaries as our features. For 

example if the hexdump is ff 00 12 1a 32, our 

features will be ff 00 12 1a and 0012 1a 32. We 

extracted around more than a million features. We 

then used chi-square to select around 10,000 most 

informative features. For each feature, we find its 

value as follows: 
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Now we select the top 10,000 features with the 

highest chi-square scores. 

 

3.1.2 Classification 

 

We used several classification algorithms to 

classify the binaries into malicious/benign. The 

models we used are as follows: 

1. Multinomial Naïve Bayes 

2. linear SVM 

3. kNN 

This makes use of similarity metrics (e.g. 

cosine similarity) to find k nearest neighbors 

and classifies the point under consideration 

into the majority class of its k nearest neighbor 

[15]. We used k=5. 

4. Logistic Regression 

5. Multiboost Adaboost - Class for boosting a 

classifier using the         MultiBoosting 

method. MultiBoosting is an extension to the 

highly successful AdaBoost technique for 

forming decision committees. MultiBoosting 

can be viewed as combining AdaBoost with 

wagging. It is able to harness both AdaBoost's 

high bias and variance reduction with 

wagging's superior variance reduction. Using 

C4.5 as the base learning algorithm, Multi-

boosting is demonstrated to produce decision 

committees with lower error than either 



AdaBoost or wagging significantly more often 

than the reverse over a large representative 

cross-section of UCI data sets. It offers the 

further advantage over AdaBoost of suiting 

parallel execution. See [17] for more details. 

 

6. J48 Decision tree -This is an entropy based 

approach for generating a pruned or unpruned 

C4.5 decision tree. For more information see 

[16]. In general, if we are given a probability 

distribution P = (p1, p2, .., pn) then the 

Information conveyed by this distribution, also 

called the Entropy of P, is:  
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        If a set T of records is partitioned into disjoint 

exhaustive classes C1, C2, .., Ck on the basis 

of the value of the categorical attribute, then 

the information needed to identify the class of 

an element of T is Info(T) = I(P), where P is 

the probability distribution of the partition (C1, 

C2, .., Ck):  
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If we first partition T on the basis of the value 

of a non-categorical attribute X into sets T1, T2, 

.., Tn then the information needed to identify 

the class of an element of T becomes the 

weighted average of the information needed to 

identify the class of an element of Ti, i.e. the 

weighted average of Info(Ti):  
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        Consider the quantity Gain(X,T) defined as 
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        This represents the difference between the 

information needed to identify an element of T 

and the information needed to identify an 

element of T after the value of attribute X has 

been obtained, that is, this is the gain in 

information due to attribute X. We can use this 

notion of gain to rank attributes and to build 

decision trees where at each node is located the 

attribute with greatest gain among the 

attributes not yet considered in the path from 

the root. 

 

For the purpose of our experiments we did not 

make use of any separate testing data set. To stay 

unbiased we used 10 fold cross validation to get the 

results. We used off the shelf softwares such as 

weak[19] and libsvm[13] for experimental results. 

 

3.2 IRC log based detection 

 

IRC has played a central role in the 

simplicity and effectiveness of a Botnet. Using a 

public communication channel, the Botmaster can 

use a simple command interface to communicate 

with a huge number of compromised zombie nodes, 

instructing them to carry out his orders.  

 There are two phases to this approach:  

First, to separate IRC traffic from other traffic. This 

is a reasonably solved problem [5][6]. The second 

step comprises of identifying Botnet traffic in the 

IRC traffic.  Hence the problem now boils down to 

a text classification problem. 

 To be able to differentiate a benign IRC 

log from an IRC log manifested with Botnet 

activity, we used features involving both dialogues 

and IRC commands. Then using these features, we 

experimented with a variety of machine learning 

algorithms on them. In particular, we ran 

algorithms such as Naïve Bayes, SVM, J48 

decision trees, kNN, etc. with 10 fold cross 

validation. The main categories of features we used 

included: 

 

� Number of users: An IRC channel with Botnet 

activity should contain an unusually large 

number of users. 

� Mean / variance of words per line and 

characters per word in dialogues: Bots usually 

do not produce dialogues that resemble human 

dialogue. 

� Number and frequency of IRC commands: We 

have noticed through examination of the logs 

that there tends to be a large number of IRC 

commands at small intervals in Botnet 

manifested logs. One possible explanation 

would be the immense number of joins and 

exits from the result of accommodating a huge 

number of users in one channel. 

� Number of lines, dialogues, and commands: In 

a benign IRC log, the number of dialogues 

should be much greater than the number of 

commands.  And as mentioned above, a Botnet 

manifested log tends to contain an immense 

number of IRC commands. 

 



IV. RESULTS AND EVALUATION 

 

4.1 Botnet Binary Detection 
 

The results obtained from the botnet binary based 

detection approach are summarized in Fig. 2. 

Clearly all the models performed reasonably well. 

Special mention must be made about Naïve Bayes 

which performed remarkably well although it is 

one of the simplest of models. SVM performed 

good too.  However some models like kNN gave 

an accuracy of 96.4 which was lower than that of 

others. We will discuss about these results in 

details in the discussion section. In particular our 

evaluation metric included accuracy, F1 score and 

kappa measure. 
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Model Accuracy F1 

score 

Kappa 

score 

NB .982 .981 .963 

Linear SVM .982 .981 .963 

J48 – decision 

tree 

.976 .975 .95 

kNN .964 .963 .926 

Logistic .982 .9815 .963 

MultiboostAB .976 .975 .951 

Fig. 2 Performance of binary based detection 

 

Model Accuracy F1 

score 

Kappa 

score 

NB .70 .457 .705 

Linear SVM .976 .945 .97 

J48 – decision 

tree 

.992 .982 .99 

kNN .992 .982 .991 

Logistic .989 .974 .987 

MultiboostAB .967 .926 .963 

Fig. 3 Performance of IRC based detection 

 

 

 

4.2 IRC log based detection 

 

The results obtained from the IRC log 

based detection approach are summarized in Fig. 3. 

A large chunk of the problem here involves text 

classification, and all algorithms, barring Naïve 

Bayes, perform encouragingly well. 

 

V. DISCUSSION 

 

In the binary based classification approach, most of 

the linear classifiers such as NB and linear SVM 

performed remarkably well. kNN however 

performed relatively bad. This can be explained on 

the basis of linearity of the data set. kNN is a non-

linear model and hence it has less bias and a high 

variance unlike NB which is linear and has high 

bias and less variance. Given our data set was 

linear, it was therefore no surprise that kNN 

exhibited a higher generalization error compared to 

NB or linear SVM. 

In the IRC log based approach, most 

classifiers performed similarly, except for Naïve 

Bayes, which was significantly worse. One 

possible explanation would be that there are 

dependencies in the features. These dependencies 

may be resolved with more training data. Since the 

set of IRC logs we obtained was not very large and 

comprehensive, it is possible that currently 

correlated features are not actually correlated in a 

larger dataset. 

 The other classifiers performed very well, 

all having accuracies greater than .96. Since SVM 



and logistic regression had the best accuracies, F1 

scores, and Kappa scores, it is likely that our 

dataset is linear.  

 In the logs that we collected with Botnet 

activity, there weren’t strong attempts of log 

obfuscation by Botmasters. But suppose that there 

were strong attempts to produce human-like 

dialogues by the bots. Then to potentially fool our 

classifiers, the dialogues must produce similar 

averages and variances in terms of words per line 

and characters per word.  

 Pushing the above scenario to the extreme, 

suppose that the bots produce perfect dialogues. In 

this case, our classifier should still work due to one 

fundamental difference between benign logs and 

logs manifested with Botnet activity – there is an 

immense number of join and exit commands in a 

Botnet infested channel.  

 

 

VI. CONCLUSION 
 

In this course project we aimed to 

highlight a major problem plaguing the Internet 

today and a potential solution to the problem by 

employing novel Machine Learning techniques. 

Our results are encouraging, indicating a definite 

advantage of using such techniques in the wild for 

alleviating the problem of Botnets. 

 Conversion of the problem in the Text 

classification domain has opened up new avenues 

in feature extraction for our solution. Possible 

future enhancements include adding additional 

features to the IRC traffic classification engine. 

Also to solve the problem of training data which, 

in retrospect, seems to be the critical to the success 

of such a project, we propose setting up a farm of 

Virtual machines as a testbed for collecting and 

mining our own logs for training purpose. 

 Lastly, the end goal of such a tool should 

be to provide proactive help to system 

administrators. In this regard, it is easy to envisage 

an application which can run on a Gateway or a 

Router, and look at Network flow traffic, and 

classify it on-the-fly enabling automated 

blacklisting of involved machines in the network.  
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