
Machine Learning Based Botnet Detection

Vaibhav Nivargi Mayukh Bhaowal Teddy Lee

{vnivargi, mayukhb, tlee21}@cs.stanford.edu

CS 229 Final Project Report

I. INTRODUCTION

A Botnet [1] is a large collection of compromised

machines, referred to as zombies [2], under a

common Command-and-Control infrastructure

(C&C), typically used for nefarious purposes.

Botnets are used in a variety of online crimes

including, and not limited to, large scale DDoS

attacks, Spam, Click Fraud, Extortion, and Identity

theft. The scale and geographical diversity of the

machines enlisted in a Botnet, coupled with easily

available source code, and support from

communities, as well as mercenary Botmasters

providing Botnet services for rent, have resulted in

Botnets becoming a highly sophisticated and

effective tool for committing online crime in recent

times [3][4]. Botnets with thousands and millions

of nodes have been observed in the wild, with

newer ones being observe every day [10].

The lifecycle of a Botnet is depicted in

Fig.1. The initial enlisting occurs by exploiting a

known vulnerability in the Operating systems

running on the machines using a wide variety of

mechanisms like worms, Trojans, P2P file sharing

networks, and exploits of common Windows

vulnerabilities, etc. Once compromised, the bot is

programmed to connect to a central location

(typically an IRC [11] server), where the Botmaster

could login and issue commands to the logged in

bots. This mechanism essentially means that the

communication is free, as broadcast is taken care of

by the IRC channel. Most Bots additionally ship

with multiple IRC and DNS addresses, meaning

taking down one such IRC channel does not in

general impair the activities of the Botnet.

 Originally, most techniques to thwart

Botnets have been reactive, reducing their

effectiveness significantly, e.g. using Honeypots to

trap and study malware, etc. Of late, significant

research has been made into the dynamics of a

Botnet, and more proactive techniques have been

suggested [5] [6] [7] [8]. A wide variety of features

and watermarks for network activity are employed

to predict Botnet activity, including TCP syn

scanning, DNS monitoring, and extensive models

of Botnet attack and propagation [9]. Despite all

these concerted efforts, Botnets remain an unsolved

problem for the online community.

Fig 1. Botnet in action

II. DATA

We had two separate data sets to collect for the

purpose of our experiments. The first set included a

large number of binaries/executables labeled as

botnet binaries and benign binaries. We acquired

the botnet binaries from the computer science

department at John Hopkins University. This is the

same data they used for botnet related work [18].

As far as the benign binaries are concerned we

randomly picked them up from Unix and windows

machines, namely from /usr/bin and from windows

system32 directory. This data was comprehensive

and well represented.

We also needed labeled IRC logs for our

experiments. While benign IRC logs are easily

available on the web, botnet affected IRC logs are

not readily available because of privacy and legal

issues. The benign IRC logs were collected from

several publicly available IRC logs from IRC

channels like Wikipedia, linode, and

kernelnewbies. These represent a diverse collection

of logs, with different purposes. Some of these logs

also have automated bots for channel maintenance

operations.

 Obtaining malicious IRC logs proved to be

extremely hard. There are several independent

Security forums who actively track botnets [12].

They monitor and mine Botnet IRC logs for

analysis and mitigation. Due to privacy and security

issues, we were unable to obtain this data, which

clearly represents a rich set of real world Botnet

IRC logs, and which would have definitely

provided more qualitative as well as quantitative

results. Several other potential sources setup their

own private infrastructure for collecting such

training data [5].

 Nevertheless we acquired data from

Northwestern University where the department of

CS is conducting research on wireless overlay

network architectures and botnet detection [7]. The

data regarding botnet IRC logs was not

comprehensive in the sense that it was IRC traffic

over a small amount of time. A larger and more

comprehensive dataset could have established our

results and hypothesis more conclusively.

III. APPROACHES

 .

We tried a 2 stage approach to solve this issue.

These methods are complementary and we can

combine them for better results. They are as

follows:

3.1 Botnet Binary Detection

There are several stages in the lifecycle of a Botnet

where a Machine learning based solution can be

deployed to thwart its effectiveness. During an

early stage, a Binary detection and classification

system can warn of a potentially malicious

executable which might endanger a host machine.

There has been some work already in this area [7]

and we leverage on top of their work to classify

Botnet executables which propagate as worms on

networks scanning for vulnerable machines for

infecting them, and enlisting them into the Bot

network.

Unlike Virus scanners like Norton AV, or

McAfee, a Machine learning solution can perform

this classification without the need for explicit

signatures. Identifying such binaries without

explicit signatures needs recognizing common

features and correlations between these binaries,

e.g. a Botnet executable will be a self-propagating

worm with a simple IRC client built in. Presence or

absence of such a feature is an indicator that such a

binary might potentially be a Botnet executable.

We used supervised learning techniques on groups

of benign executables vs. Botnet executables.

3.1.1 Features

We are focusing on binary profiling, and hex

dumps for feature extraction. Identifying the strain

of these binaries might also give an insight about

the location of the Command-and-Control center

and about the botnet capabilities in general. We

used n-grams (more specifically 4-grams) of

hexdump of the binaries as our features. For

example if the hexdump is ff 00 12 1a 32, our

features will be ff 00 12 1a and 0012 1a 32. We

extracted around more than a million features. We

then used chi-square to select around 10,000 most

informative features. For each feature, we find its

value as follows:

 feature=00121a32 feature≠00121a32

class=botnet A C

class≠botnet B D

))()()((

)(
),(

2
2

DCBADBCA

CBADN
fbotnet

++++

−
=χ

Now we select the top 10,000 features with the

highest chi-square scores.

3.1.2 Classification

We used several classification algorithms to

classify the binaries into malicious/benign. The

models we used are as follows:

1. Multinomial Naïve Bayes

2. linear SVM

3. kNN

This makes use of similarity metrics (e.g.

cosine similarity) to find k nearest neighbors

and classifies the point under consideration

into the majority class of its k nearest neighbor

[15]. We used k=5.

4. Logistic Regression

5. Multiboost Adaboost - Class for boosting a

classifier using the MultiBoosting

method. MultiBoosting is an extension to the

highly successful AdaBoost technique for

forming decision committees. MultiBoosting

can be viewed as combining AdaBoost with

wagging. It is able to harness both AdaBoost's

high bias and variance reduction with

wagging's superior variance reduction. Using

C4.5 as the base learning algorithm, Multi-

boosting is demonstrated to produce decision

committees with lower error than either

AdaBoost or wagging significantly more often

than the reverse over a large representative

cross-section of UCI data sets. It offers the

further advantage over AdaBoost of suiting

parallel execution. See [17] for more details.

6. J48 Decision tree -This is an entropy based

approach for generating a pruned or unpruned

C4.5 decision tree. For more information see

[16]. In general, if we are given a probability

distribution P = (p1, p2, .., pn) then the

Information conveyed by this distribution, also

called the Entropy of P, is:

))log(*...)log(*)log(*()(2211 nn ppppppPI +++−=

 If a set T of records is partitioned into disjoint

exhaustive classes C1, C2, .., Ck on the basis

of the value of the categorical attribute, then

the information needed to identify the class of

an element of T is Info(T) = I(P), where P is

the probability distribution of the partition (C1,

C2, .., Ck):

)
||

||
,...,

||

||
,

||

||
(21

T

C

T

C

T

C
P k

=

If we first partition T on the basis of the value

of a non-categorical attribute X into sets T1, T2,

.., Tn then the information needed to identify

the class of an element of T becomes the

weighted average of the information needed to

identify the class of an element of Ti, i.e. the

weighted average of Info(Ti):

∑
=

=

n

i

i

i TInfo
T

T
TXInfo

1

)(*
||

||
),(

 Consider the quantity Gain(X,T) defined as

),()(),(TXInfoTInfoTXGain −=

 This represents the difference between the

information needed to identify an element of T

and the information needed to identify an

element of T after the value of attribute X has

been obtained, that is, this is the gain in

information due to attribute X. We can use this

notion of gain to rank attributes and to build

decision trees where at each node is located the

attribute with greatest gain among the

attributes not yet considered in the path from

the root.

For the purpose of our experiments we did not

make use of any separate testing data set. To stay

unbiased we used 10 fold cross validation to get the

results. We used off the shelf softwares such as

weak[19] and libsvm[13] for experimental results.

3.2 IRC log based detection

IRC has played a central role in the

simplicity and effectiveness of a Botnet. Using a

public communication channel, the Botmaster can

use a simple command interface to communicate

with a huge number of compromised zombie nodes,

instructing them to carry out his orders.

 There are two phases to this approach:

First, to separate IRC traffic from other traffic. This

is a reasonably solved problem [5][6]. The second

step comprises of identifying Botnet traffic in the

IRC traffic. Hence the problem now boils down to

a text classification problem.

 To be able to differentiate a benign IRC

log from an IRC log manifested with Botnet

activity, we used features involving both dialogues

and IRC commands. Then using these features, we

experimented with a variety of machine learning

algorithms on them. In particular, we ran

algorithms such as Naïve Bayes, SVM, J48

decision trees, kNN, etc. with 10 fold cross

validation. The main categories of features we used

included:

� Number of users: An IRC channel with Botnet

activity should contain an unusually large

number of users.

� Mean / variance of words per line and

characters per word in dialogues: Bots usually

do not produce dialogues that resemble human

dialogue.

� Number and frequency of IRC commands: We

have noticed through examination of the logs

that there tends to be a large number of IRC

commands at small intervals in Botnet

manifested logs. One possible explanation

would be the immense number of joins and

exits from the result of accommodating a huge

number of users in one channel.

� Number of lines, dialogues, and commands: In

a benign IRC log, the number of dialogues

should be much greater than the number of

commands. And as mentioned above, a Botnet

manifested log tends to contain an immense

number of IRC commands.

IV. RESULTS AND EVALUATION

4.1 Botnet Binary Detection

The results obtained from the botnet binary based

detection approach are summarized in Fig. 2.

Clearly all the models performed reasonably well.

Special mention must be made about Naïve Bayes

which performed remarkably well although it is

one of the simplest of models. SVM performed

good too. However some models like kNN gave

an accuracy of 96.4 which was lower than that of

others. We will discuss about these results in

details in the discussion section. In particular our

evaluation metric included accuracy, F1 score and

kappa measure.

spodataTotal

spodatapredictedCorrectly
Accuracy

int#

int#
=

callecision

callecision
F

RePr

Re*Pr*2
1

+
=

AgreementChanceObservedTotal

AgreementChanceAgreementObserved
Kappa

−

−
=

Model Accuracy F1

score

Kappa

score

NB .982 .981 .963

Linear SVM .982 .981 .963

J48 – decision

tree

.976 .975 .95

kNN .964 .963 .926

Logistic .982 .9815 .963

MultiboostAB .976 .975 .951

Fig. 2 Performance of binary based detection

Model Accuracy F1

score

Kappa

score

NB .70 .457 .705

Linear SVM .976 .945 .97

J48 – decision

tree

.992 .982 .99

kNN .992 .982 .991

Logistic .989 .974 .987

MultiboostAB .967 .926 .963

Fig. 3 Performance of IRC based detection

4.2 IRC log based detection

The results obtained from the IRC log

based detection approach are summarized in Fig. 3.

A large chunk of the problem here involves text

classification, and all algorithms, barring Naïve

Bayes, perform encouragingly well.

V. DISCUSSION

In the binary based classification approach, most of

the linear classifiers such as NB and linear SVM

performed remarkably well. kNN however

performed relatively bad. This can be explained on

the basis of linearity of the data set. kNN is a non-

linear model and hence it has less bias and a high

variance unlike NB which is linear and has high

bias and less variance. Given our data set was

linear, it was therefore no surprise that kNN

exhibited a higher generalization error compared to

NB or linear SVM.

In the IRC log based approach, most

classifiers performed similarly, except for Naïve

Bayes, which was significantly worse. One

possible explanation would be that there are

dependencies in the features. These dependencies

may be resolved with more training data. Since the

set of IRC logs we obtained was not very large and

comprehensive, it is possible that currently

correlated features are not actually correlated in a

larger dataset.

 The other classifiers performed very well,

all having accuracies greater than .96. Since SVM

and logistic regression had the best accuracies, F1

scores, and Kappa scores, it is likely that our

dataset is linear.

 In the logs that we collected with Botnet

activity, there weren’t strong attempts of log

obfuscation by Botmasters. But suppose that there

were strong attempts to produce human-like

dialogues by the bots. Then to potentially fool our

classifiers, the dialogues must produce similar

averages and variances in terms of words per line

and characters per word.

 Pushing the above scenario to the extreme,

suppose that the bots produce perfect dialogues. In

this case, our classifier should still work due to one

fundamental difference between benign logs and

logs manifested with Botnet activity – there is an

immense number of join and exit commands in a

Botnet infested channel.

VI. CONCLUSION

In this course project we aimed to

highlight a major problem plaguing the Internet

today and a potential solution to the problem by

employing novel Machine Learning techniques.

Our results are encouraging, indicating a definite

advantage of using such techniques in the wild for

alleviating the problem of Botnets.

 Conversion of the problem in the Text

classification domain has opened up new avenues

in feature extraction for our solution. Possible

future enhancements include adding additional

features to the IRC traffic classification engine.

Also to solve the problem of training data which,

in retrospect, seems to be the critical to the success

of such a project, we propose setting up a farm of

Virtual machines as a testbed for collecting and

mining our own logs for training purpose.

 Lastly, the end goal of such a tool should

be to provide proactive help to system

administrators. In this regard, it is easy to envisage

an application which can run on a Gateway or a

Router, and look at Network flow traffic, and

classify it on-the-fly enabling automated

blacklisting of involved machines in the network.

VII. ACKNOWLEDGEMENT

We take this opportunity to thank Elizabeth Stinson

of Stanford Security Group for her help and

support. We also extend our acknowledgements to

Yan Chen of northwestern university for providing

us with botnet IRC logs and to Andreas Terzis of

JHU for botnet binary datasets. We further

acknowledge our gratitude to Prof. Andrew Ng and

the TAs of cs229 for their help and support.

VIII. REFERENCES

[1] http://en.wikipedia.org/wiki/Botnet

[2] http://en.wikipedia.org/wiki/Zombie_computer

[3]http://securitywatch.eweek.com/exploits_and_at

tacks/everydns_opendns_under_botnet_ddos_attac

k.html

[4]http://it.slashdot.org/article.pl?sid=06/10/17/002

251

[5] W. Timothy Strayer, Robert Walsh, Carl

Livadas, and David Lapsley. Detecting Botnets

with Tight Command and Control. To Appear in

31st IEEE Conference on Local Computer

Networks (LCN'06). November 2006

[6] Using Machine Learning Techniques to Identify

Botnet Traffic, Carl Livadas, Robert Walsh, David

Lapsley, W. Timothy Strayer

[7] Yan Chen, “Towards wireless overlay network

architectures”

[8] Binkley- An Algorithm for Anomaly-based

Botnet Detection .

[9] E. Cooke, F. Jahanian, and D. McPherson. The

zombie roundup: Understanding, detecting, and

disrupting botnets. In USENIX SRUTI Workshop,

pages 39–44, 2005.

[10]http://www.vnunet.com/vnunet/news/2144375/

botnet-operation-ruled-million

[11] http://www.irc.org/tech_docs/rfc1459.html

[12] www.shadowserver.org

[13] http://www.csie.ntu.edu.tw/~cjlin/libsvm/

[14] Detecting Botnets with Tight Command and

Control, Carl Livadas, Robert Walsh, David

Lapsley, W. Timothy Strayer.

 [15] Aha, D., and D. Kibler (1991) "Instance-

based learning algorithms", Machine Learning,

vol.6, pp. 37-66.

[16] Ross Quinlan (1993). "C4.5: Programs for

Machine Learning", Morgan Kaufmann Publishers,

San Mateo, CA.

[17] Geoffrey I. Webb (2000). "MultiBoosting: A

Technique for Combining Boosting and Wagging".

Machine Learning, 40(2): 159-196, Kluwer

Academic Publishers, Boston

[18] Moheeb Abu Rajab et.al (2006)”A

Multifaceted approach to understanding the botnet

phenonmenon”

[19] http://www.cs.waikato.ac.nz/ml/weka/

