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I. INTRODUCTION

Dimension reduction of datasets is very useful in dif-
ferent application including classification, compression,
feature extraction etc.; Linear methods such as principal
Component Analysis, have been used for a long time and
seem to work very well in many applications. But, there
are much more applications in which the dataset doesn’t
have a linear structure and so the linear methods do not
work very well for them. Fig. (1) and Fig. (2) illustrate
what linear and nonlinear structures mean. When the
points of the dataset lie close to a linear subspace of the
ambient space, its structure is called linear and if they are
close to a smooth manifold as in Fig. (2), then it is said to
have nonlinear structure. Nonlinear dimension reduction
methods try to recover the underlying parametrization
of scattered data on a manifold embedded in high
dimensional Euclidean space. In the next section some
of the linear and nonlinear methods will be explained
very briefly; But, the focus of this report will be on
image processing applications of dimension reduction
algorithms. Usually the image databases (each image
is considered as a very large dimensional vector) do
not have linear structures; Donoho and Grimes [1] have
shown that in some image databases nonlinear methods
will lead to very reasonable parameters and this proved
the efficiency of these methods in processing image
databases. In this report, nonlinear methods will be used
in three different image processing applications: Image
Synthesis,Image Classification and Video Synthesis. It
will be shown that the methods which are proposed here
can easily outperform the linear methods. The structure
of this paper is as follows: In the next section, different
algorithms of dimension reduction will be reviewed.
In section III two ways are explained for synthesizing
Images. In section IV an image classification is proposed
and compared with the other methods and finally in
section V, I will explain how to synthesize a video by
using the manifolds.

Fig. 1. Linear Data Structure

Fig. 2.

Nonlinear Data Structure

During this project several different databases have been
tested; But in order to use the same database during
the whole report, most of the figures in this report are
generated from the same database. This image database
is shown in Fig. (3).

II. DIMENSION REDUCTION ALGORITHMS

In this section some of the linear and nonlinear di-
mension reduction algorihtms will be explained.
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Fig. 3. Some of the patches in the first Database I used

A. Linear Methods

1) Principal Component Analysis(PCA): PCA [2] is a
way of changing the coordinates such that the first coor-
dinate is the maximum variance direction (i.e. among
all the directions that you can project the data on,
projection on this direction may have the maximum
variance). The second coordinate of PCA is orthogonal
to the first direction and among all the directions that
are orthogonal to the first direction it has the maximum
variance property. The other directions of PCA can be
defined in the same way. For more information please
refer to [2].

2) Multidimensional Scaling: Multidimensional Scal-
ing (MDS) deals with the following problem: for a set
of observed similarities (or distances) between every
pair of N items, find the representation of the items in
fewer dimensions such that the similarities or distances
of these new items is close to the original similarities. It
is obvious that in most of the situations the similarities
are not exactly the same as the original similarities and
one should just does his/her best to make them as close
as possible. Assume that the similarities are Euclidean
distances between the points x, Z,, ..., Z,, ; These points
are embedded in an m dimensional space R" and the
question is, can these points be embedded in the d-
dimensional (d < m) Euclidean space such that their
structure(or the distances between them) doesn’t change?
Assume that all the vectors are zero mean. Obviously, the
solution of this problem is not unique and is invariant to
translation and rotation of the data. In order to make the
solution unique, some more constraints are imposed.The
constraint is that the lower dimensional points are found
from an orthogonal projection of the original data on
a d-dimensional space. Assume that the data in d-
dimensional space is represented by y ,y,,...,y . Let

d;; be the distance between z; and Z; and ‘izy shows the
distance between y. and Y ; The closeness of d;; and dw
is measured with Stress which is defined in this way:

Stress = Z Z d2 — dA2

=1 j=1

ey

An interesting point about this quantity is that , the
elements of summation are not in the absolute value. The
reason is that y. is an orthogonal projection of z; and

o) cfij is always less than d;;. The advantage of defining
Stress in this way is that the global optimum of this
problem can be found explicitly and there is no need for
an iterative algorithm. The optimum projection would be
the first d principal components of the covariance matrix
of z, 29, ..., 2, [3]. In other words, y Yy Ygr o Y, CAN be
found by the multlphcatlon of X with the matrix which
is found from the principal components of the covariance
matrix. For more information refer to [3].

B. Nonlinear Methods

1) ISOMAP: ISOMAP [4] is an algorithm that tries to
preserve the geometry of the data. MDS also tries to keep
the geometry of the data unchanged; The term geometry
was defined by the similarity matrix in section IL. It was
also mentioned in section II that, the Euclidean distance
is usually used as a similarity matrix. But, as it is obvious
the Euclidean distance is not at all, representative of the
geometry of a Manifold. Instead, another distance called
geodesic distance can represent the geometry very well.
Geodesic distance between two points on the manifold
is the length of the shortest path on the manifold from
one point to another. This is a brief description of the
ISOMAP algorithm:

o Find some neighbors of each point; Two differ-
ent criteria are considered for neighborliness
One is epsilon-neighborhood and the other is k-
neighborhood. In epsilon neighborhood, a real value
epsilon is considered and every point that has eu-
clidean distance of less than epsilon to the point,
is recognized as its neighbor. In k-neighborhood
algorithm, the k closest points are considered as the
neighbors of the point.

e In order to find a geodesic distance between two
points we try to connect every two points with
a path which is constructed from connecting the
neighbors of the points. The geodesic distance is
the length of the shortest path.



o apply the MDS to this similarity Matrix and reduce
the dimension which has geodesic distances as its
elements.

2) Locally Linear Embedding: Locally Linear Em-
bedding(LLE) [5] is another algorithm to retrieve the
parameter space of a Manifold. Again LLE is trying to
somehow preserve the geometry of the data which is in a
high dimensional space. But, the method this algorithm
chooses to do so is different from that of ISOMAP. The
algorithm is as follows:

 Find the optimum value of w;; such that:

n n
¢ .
w?" = arg min g |z; — E wizii? ()
J wig
i=1 j=1
subject to these constraints:

{ wij =0, if z; ¢ Ni(zi);

Z j Wi; = 1 Wi
in which Nj(x;) shows the k-neighborhood of the
point x;;

e Find y1,y2, ...y, in a d-dimensional space such that
this cost function is minimized:

n n
— . opt, |2
Error = E ly; — E Wy Yijl
i=1 j=1

as can be seen each of these two steps are simple Least
Squares Problems and so the global optimum of each of
these two problems can be found easily. This algorithm
tries to keep the neighborhood of each point (or local
structure of manifold) almost unchanged.

3)

)

III. IMAGE SYNTHESIS

Assume that two images are given (from the same
database) and we want to somehow find an average of
these two images. How can it be done? It is obvious
that, the simple average doesn’t work at all and will not
generate any reasonable image. For example consider the
two images shown in the first row of Fig. (4) are given
and the goal is to find the average of these two images.

Considering the average to be the midpoint on the line
that connects the vectors of these two images will result
in an image which is not a natural image at all(this is
equivalent to simple averaging). For example the simple
average of these two images is also shown in Fig. (4);
Two different algorithms are proposed here to solve this
problem.

1) All the images are on the manifold that was found
before (By ISOMAP or LLE). There is a path
on the manifold that connects these two images

First Image Second Image

20 40 60

Average Image on Geodesic Simple Averaging

20 40 60

Fig. 4. Two Images and their Geodesic Average as defined in this
report and their simple average!

and has a shortest length (the geodesic). Find
the midpoint of this path and that’s the average
image. Obviously if the density of the points on
the manifold is not enough, the average image will
not be very natural but for most practical purposes
the density of points is high enough. The result of
this algorithm is shown in Fig. (4);

2) Assume that the parameter space of the manifold is
convex. Also assume that the parameters that cor-
respond to our two images are #; and 6; I define
the average image as the image that corresponds
to the parameter:

01 + 0
aavg = 9

&)

But 64,4 may correspond to a point which is not in
our data base. In order to approximate it with the
points in the database, Assume that él, ég, e éK
are the K nearest neighbors of 0,,,;

o Calulate w°! in this way:

opt

w = ar min 000 — w112
N 8y min g =3 with]
(6)
o Find the image from this equation:
Tmageqy =3 ui e ()

in which z; is the image that corresponds to
0;.

The result of this algorithm when applied to two
images is shown in Fig. (5); It is obvious that the second
method is more general in the sense that with this method
for every value of 6 in the parameter space one can
synthesize an image corresponding to this parameter.
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Average Image

Fig. 5. Two images and their average by the second method

IV. IMAGE CLASSIFICATION

Support Vector Machine (SVM) ([2] or [6]) uses the
fact that by transforming the data to higher dimensional
space we can make it more linearly separable. Therefore
in SVM method, we first transform the data to a higher
dimensional space and then try to find the optimum
separating hyperpalne between the two classes. Making
the data more separable (in the linear sense) is the main
reason behind the success of SVM. Now, assume that
the data is on a manifold and is not separable in that
high dimensional ambient space. How can we find a
good kernel(or equivalently transform) to make this data
more suitable for linear classifiers. A very reasonable
answer to this problem is to use the PARAMETER
SPACE. There are several advantages in using the
parameter space. First, it is usually very low dimensional
space and whatever algorithm we use for classification,
overfitting is much less likely(Of course we haven’t lost
much information about the relative distances of the
points and so the likelihood of underfitting in parameter
space is not much more than that of the ambient space).
On the other hand, in many situations when we transform
the data to the parameter space because we flatten the
curls of the manifold, the data becomes more separable.
All these observations lead us to use parameter space for
classification. Here is a method for classification of the
data:

o Find the lower dimensional coordinates of the train-
ing data;

e By using SVM find the best hyperplane that sepa-
rates the data in lower dimensional space

o Find the nearest neighbors of each test point in the
training data;

o Find the optimum linear weights that approximate
the test data from the Training data

0.07
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Fig. 6. Test Error of Classification 2s and 3s in Terms of Dimension
for two datasets

o Use the same weights to approximate the parame-
ters of the test data
e Use SVM classifier in lower dimensional space

In order to understand the best dimension for classi-
fication, one can use cross validation; But as it will be
seen later the performance of this algorithm is usually
not very sensitive to the dimension we choose, as far
as the dimension is reasonable. There are other param-
eters in the algorithm that can be chosen through cross
validations; But, on the datasets that I have done my
simulations, the performance of the algorithm was very
robust to the small variation of those parameters.

As an example, the classification of 2s and 3s is shown
here. A set of 1000 images of handwritten 2s and 3s is
used to train the model. The size of each image is 28x28;
Two datasets of 200 images are considered as Test sets.
The test errors in terms of the dimension of parameter
space is shown in the following figure;

As it can be seen, as the dimension changes from 4
to 11 the error doesn’t change very much; In terms of
cross validation the best dimension is 6, but as mentioned
before 4 < d < 11 is acceptable. It can also be seen that
if the dimension is chosen correctly, this algorithm can
easily outperform SVM in the ambient space.

V. SYNTHESIZING VIDEO

Again assume that we have a database of images. For
example assume that these images are photos of a face
from different horizontal and vertical directions. Also
assume that two images are given (/; and Is) from this
database. The goal is to synthesize a video to show us



a way that the camera can move very smoothly from
one position to another. The idea to achieve this goal is
very similar to the idea which was proposed before, for
finding the average. Again we find the geodesic between
the two patches. Then we divide the geodesic into n
points(n is the number of frames that we want in the
video)and synthesize these frames from their neighbors.
To be more specific assume that x1,x2, ...,z are the
image patches from the dataset that lie on the geodesic
of the two images x1 = I; and z; = I». Also assume
that the geodesic distance of x; and x is equal to D;
The distance of each new patch from x; is calculated
from this formula(distance is calculated on the geodesic
from x1 to x,):

DG -1)

d(l‘l,Zj) = n

®)

in which z; is the j’th synthesized frame and d(z1, 2;)
represent the distance of z; and 1 on the geodesic of x;
and zy; In order to synthesize z; assume that 7 is found

such that:
d(w1,2;) < d(w1,25) < d(z1,7i41) )

Then use this formula to reconstruct z;:

b — l"d(xl’ -TiJrl) — d(éEl, Zj)
J Zd(.%'l,.l‘zq_l) — d(.%l,l‘i)
d(a:l, Zj) — d(.%‘l, CITZ)
d(z1,xi41) — d(x1,25)

+Tit1
(10)

Fig. (7) Shows an example of this algorithm. Leftmost
frame and rightmost frame are given and 3 frames are
synthesized;

VI. CONCLUSION AND FUTURE WORK

In this report some of the methods which are used
for linear and nonlinear dimension reduction have been
reviewed and applied to some of the simple databases
of images. Two algorithms have been proposed for
generating some synthetic images that can work well
if the manifold of images has been sampled at a high
density. This also led us to the video synthesis to show
smooth variation of one image to another image. Also,
I proposed a method for classifying high dimensional
data by using its low dimensional parameter space. This
algorithm needs more thought and more simulations;
Also it should be tested in different applications of
classification and on other databases. In this report only
binary classification was considered; Definitely, one of

Fig. 7. 5 Frames of Video to Show the Rotation of The Face

the future directions would be to extend this algorithm
to more general classification problems. In addition to
classification there are some other interesting questions
that shall be answered. For example, is there any better
method for synthesizing patches? Another problem that
shall be answered is how can someone compare the
result of LLE and ISOMAP. In other words, a measure
is needed to say which parameters match better to the
database. This problem seems very interesting, because
there are many methods of Nonlinear dimension reduc-
tion and it is not easy to say which one works better
than the others.
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