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Abstract

The system identification of UAV, which is the estimation of the parameters of the
equation of motion, is crucial for implementing the autopilot. The system identi-
fication especially with noisy data is challenging problem. In this report, we will
estimate parameters of equation of motion for DragonFly UAV from Stanford Hy-
brid Systems Laboratory in Aero/Astro department via Baysian estimation. The
basic idea here is that the most probable coefficients of the equation of motion,
which is set to the unknown set, can be found by maximizing the probability of
that unknown set given the data. Furthermore, from Bayesian rule, the conditional
probability is proportional to the product of the likelihood function and the prior.
By properly defining the likelihood function and the prior, we will be able to find
the most probable unknown set of parameters. Identifying the system of UAV, the
performance of the estimator will be evaluated by cross validation and in particu-
larly the benefit of the Bayesian estimation will be highlighted by comparing it to
the general least square method.

1 Bayesian System Identification

The system identification is the first and crucial step for the design of the controller, simulation of
the system and so on. Frequently it is necessary to analyze the flight data in the frequency domain
to identify the UAV sytem. Our approach, in this project, uses the data from the flight test of the
UAV in time domain thus does not require to excite every mode of a given system. This approach
is beneficial in terms of the simpleness and computational efficiency as Bayesian estimator can be
performed with less computational cost than frequency domain least square method. In addition, the
theoretical derivation is not limited to the linear system thus it can be easily extended to the nonlinear
system identification when the assumption imposed on the following theoretical background works
well.

Suppose the system, which is linear or nonlinear, is given.

ẋ(t) = f(x; c) + u(t) + ω(t) (1)

y(t) = x(t) + ν(t). (2)

wherex, y ∈ Rp, c ∈ Rk are state variable, system output and unknown coefficient vector to be
determined. Also the dynamic noise and measurement noise are assumed as white Gaussian noise
which satisfies the following property.

E [ω(t)] = 0, cov(ω(t)) = D̂, (3)

E [ν(t)] = 0, cov(ν(t)) = σ2Î . (4)

whereω, ν ∈ Rp.



Another assumption we will use through this report is that the full states were measured, thusω(t)
can represent both the dynamic noise and the measurement noise. From this assumption our un-
known set is reduced toM = {c, D̂}. The purpose of this paper, which is to find out the most
probable unknown set given the time series of data, can be achieved by choosing the unknown set
that gives the peak value of posterior probability,Pps(M|Y). From Bayes’ theorem,

Pps(M|Y) =
P (Y|M)Ppr (M)∫

P (Y|M) Ppr (M) dM . (5)

The basic idea is to update the posterior of the unknown set by using the time sequence of data and
replace the prior by the posterior probability distribution. The theoretical detail and the application
in the case of the stochastic system driven by only white Gaussian noise is well provided in [1]. But
the application of Bayesian inference to the practical system identification is meaningful task. The
noise property has a key role to construct the probability density function for the state variable, that
is time series of data, in our report.

1.1 Maximum Likelihood Estimation

The midpoint Euler discretization scheme is used to construct the discrete system.

xn+1 = xn + hf(x̃n; c) + hun + zn (6)

yn = xn. (7)

whereE
[
zn, zT

n′
]

= h2D̂δnn′ . The last equality came from the assumption aboutω(t) which is
previously mentioned. From this point, the state variable,xn, and the system output,yn, are set to
be identical. The procedure toward the most probable unknown set is as follows. The likelihood
function, P (Y|M) is obtained by transformation of the probability density function ofzn to the
function of the output,yn, along the given data. Adding initial guess for the prior distribution of the
unknown set gives the posterior distribution of the unknown set which has to be maximized.

The probability density function ofzn along the given data is

P [{zn}] =
m−1∏
n=0

1√
(2π)p |h2D̂|

exp
(

1
2h2

zT
n D̂−1zn

)
. (8)

The transformation of the probability function fromzn to xn is related by Jacobian matrix.

P [{xn}] =
dzn

dxn+1
P [{zn} → {xn}] . (9)

Jacobian matrix is

dzn

dxn+1
=

m∏
n=1

p∏

i=1

[
1− h

2
∂fi (x̃n−1; c)

∂xn
i

]
≈ exp

[
−h

2

m∑
n=1

trΦ(x̃n−1; c)

]
. (10)

where, x̃j = xj+1+xj

2 and Φij (x; c) = ∂fi(x;c)
∂xj

. This assumption here is crucial to make the
objective function be a convex problem even in the case of the nonlinear system. Thus a relatively
simple system such as Lorenz system can be identified quite accurately [1].

Substituting Eq.(8) and (10) into Eq.(9) and the probability of the initial state produces the proba-
bility density function of the state variableyn along the given data.

P (Y|M) = P (y0) exp

[
−h

2

m−1∑
n=0

trΦ (ỹn; c)

]
m−1∏
n=0

1

(2π)p/2 |h2D̂|1/2

exp
(
−1

2

[
ẏn − f̂ (ỹn; ĉ)

]T

D̂−1
[
ẏn − f̂ (ỹn; ĉ)

])
. (11)

where,ẏn = yn+1−yn

h . Now, f̂ and ĉ is the equation and unknown coefficients including input
signal and input coefficients.



With the initial guess of Gaussian in̂c and uniform distribution inD̂, the posterior of the unknown
set, which is the objective function is explicitly expressed.

`(ĉ, D̂) = log L(ĉ, D̂) = log P (M|Y) ∝ −ρ(D̂) + ĉT ϕ(D̂)− 1
2
ĉT Λ(D̂)ĉ, (12)

ρ(D̂) =
m

2
log |D̂|+ 1

2

m−1∑
n=0

ẏT
n D̂−1ẏn, (13)

ϕ(D̂) = Σprĉpr +
m−1∑
n=0

(
UT

n D̂−1ẏn − h

2
UT

n

)
, Λ(D̂) = Σpr +

m−1∑
n=0

UT
n D̂−1Un. (14)

where,f̂(x; c) = U(x)ĉ, Un =
[

∂f̂1(x̃n)
∂x1

. . .
∂f̂p(x̃n)

∂xp

]
.

The unknown set,M, maximizing the objective function can be obtained by iterating the maximiza-
tion until the convergence. For the first iteration,ĉpr is used as the first guess forĉ and the unknown
set is updated subsequently whileΣpr is updated asΛ(D̂). The maximum likelihood estimate of̂D
andĉ are

D̂ =
1
m

m−1∑
n=0

(ẏn − Unĉ) (ẏn − Unĉ)T
, ĉ = Λ(D̂)−1ϕ(D̂). (15)

2 Equation of Motion of DragonFly

The linearized equation of motion of DragonFly [2] is the hypothesis of the learning algorithm.

V̇T = AXw (16)

α̇ = q − (p cosα + r sinα) tan β +
AZw

VT cos β
(17)

β̇ = − (r cosα− p sinα) +
AY w

VT
(18)

ṗ =
Iy − Iz

Ix
qr +

q̃Sb

Ix
Cl (19)

q̇ =
Iz − Ix

Iy
rp +

q̃Sc

Iy
Cm (20)

ṙ =
Ix − Iy

Iz
pq +

q̃Sb

Iz
Cn (21)




φ̇

θ̇

ψ̇


 =

[ 1 sin φ tan θ cosφ tan θ
0 cos φ − sinφ
0 sin φ sec θ cos φ sec θ

][
p
q
r

]
(22)

Eq.(19) - (21) are referred to the wind axis coordinate and Eq.(22) - (24) are established about
the body fixed coordinate.(VT , α, β) are the total velocity, angle of attack and the sideslip an-
gle, (p, q, r) are angular velocity in the body fixed coordinate,(φ, θ, ψ) are Euler angle. Also
(AXw, AY w, AZw) represents the force in the wind axis andq̃, S, b, c are dynamic pressure, wing
platform area, wing span and mean chord. Because the data from the flight data is based on the
small perturbation deviated from the nominal condition, the hypothesis of the data turns out to be
the linearized equation of motion, Eq.(23).




∆v̇T

∆α̇
q̇

∆θ̇

∆β̇
ṗ
ṙ

∆φ̇




= A




∆vT

∆α
q

∆θ
∆β
p
r

∆φ




+ B




δe

δt

δa

δr


 (23)



where,A and B matrix are the coefficients matrix which will be estimated andδe, δt δa δr are
elevator input, throttle input, aileron input and rudder input.

3 System Identification of DragonFly

In this section, the result of dynamics system identification will be presented by comparing the flight
data and trajectory from the estimated model. The result of the system identification is presented in
Fig.(1) and (2). These figures show the result of longitudinal and lateral system identification.
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Figure 1: Longitudinal system dynamics identification

4 Cross Validation and Comparison with GLS

The cross validation of Bayesian system identification was performed by utilizing different flight
data from different dates and computing the averaged sum of squared error. To emphasize the
benefit of Bayesian approach the sum of squared error of each state variable was compared with
one from GLS(Generalized Least Square) method. Table (1) represents the comparison of sum of
squared error between Bayesian and GLS method.

Table 1: The averaged sum of squared error of Bayesian and GLS.

State variable GLS Bayesian
vT 6.4690 2.4328
α 0.0009 0.0002
q 0.0093 0.0020
θ 0.0909 0.0039
β 0.0023 0.0003
p 0.0207 0.0127
r 0.0813 0.0070
φ 0.2531 0.0591



320 325 330 335 340
−0.05

0

0.05

0.1

0.15

time(sec)

β(
de

g)

320 325 330 335 340
−1

−0.5

0

0.5

1

time(sec)

p(
de

g/
s)

model
flight data

320 325 330 335 340
−0.4

−0.2

0

0.2

0.4

time(sec)

r(
de

g/
s)

320 325 330 335 340
−1

−0.5

0

0.5

time(sec)
φ(

de
g)

Figure 2: Lateral system dynamics identification

5 Conclusion and Future Work

Combined with the simulated trajectory using the estimated model and comparison of sum of
squared error the conclusion can be drawn that the estimated system using Bayesian approach tracks
the measured data quite well and beats least square method in time domain in terms of the averaged
sum of squared error. In addition, the pure system property can be obtained as Bayesian system
identification can extract the information about the measurement noise. In other words, Bayesian
approach is more appropriate when it comes to the system identification from very noisy measure-
ment.

Other advantage of this approach is that Bayesian approach can be extended to nonlinear systems.
Although the extension to the nonlinear system equation was limited because some of coefficients
depend on state variables, Bayesian approach can be applied to the identification of nonlinear sys-
tems whose coefficients are constant.

It is well understood that the best way to test the performance of the system identification is to
implement the controller based on the identified model. This method was impossible due to various
reasons such as the limitation of time and cost. We would like to say that, however, the controller
execution to the real dynamic system is interesting and valuable future work.
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