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ABSTRACT 

We propose SQUINT – an SVM based approach to identify 
sections (paragraphs) of a Web page that are relevant to a query in 
Web Search. SQUINT works by generating features from the top 
most relevant results returned in response to a query from a Web 
Search Engine, to learn more about the query and its context.  It 
then uses an SVM with a linear kernel to score sections of a Web 
page based on these features. One application of SQUINT we can 
think of is some form of highlighting of the sections to indicate 
which section is most likely to be interesting to the user given his 
query. If the result page has a lot of (possibly diverse) content 
sections, this could be very useful to the user in terms of reducing 
his time to get the information he needs. Another advantage of this 
scheme as compared to simple search term highlighting is that, it 
would even score sections which do not mention the key word at 
all. We also think SQUINT could be used to generate better 
summaries for queries in Web Search. One can also envision 
SQUINT as being able to create succinct summaries of pages of 
results, by pulling out the most relevant section in each page and 
creating a meta summary page of the results. The training set for 
SQUINT is generated by querying a Web Search Engine and hand 
labelling sections. Preliminary evaluations of SQUINT by K-fold 
cross validation appear promising. We also analyzed the effect of 
feature dimensionality reduction on performance. We conclude 
with some insights into the problem and possible directions for 
future research. 
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1. INTRODUCTION  
Currently for Web Search, the de-facto model is that a user inputs a 
query and gets multiple pages of links to results. Then the user, 
based on the snippets that he sees, clicks on one of the results. The 
result page could have a lot of content in it and it is left to the user 
to figure out where in the page, his answer to the query lies. Some 
shallow techniques that search engines at times use to offset this 
problem are to highlight the search terms in the document. 
Although this is a step in the right direction, the results are often 
very unsatisfactory especially if the search term is not a very 
differentiating term or if it does not appear in the section at all. 

In this paper, we propose SQUINT, an SVM based approach for 
identifying the sections in a web page relevant to a user's query to 
help the user jump right into the most relevant section of the Web 
page. Here, we define a section to be a paragraph. SQUINT works 
by making use of the top K results returned in response to a query 
from a Web Search Engine (We use the Google API), to learn more 
about the query and its context.  

The problem can be formalized as follows. Given a query Q, a 
standard Web search engine returns a set of pages ranked in 
descending order of relevance. We call this set, P. Given P, let S be 
the set of all sections in every page in P.  

S = {s; s is a section in some page in P} 

Given Q, we generate S, and use it to train a Support Vector 
Machine. During testing, given a particular section, we can predict 
a numerical score indicative of the relevance of the section to the 
query, Q. The scores of all the sections in a page with respect to a 
query enforce an ordering among the sections in terms of relevance 
to the query. We use an SVM with a linear kernel in SQUINT. 
Support Vector Machines have been shown to work very well for 
high dimensional learning problems similar to the ones 
encountered when dealing with text [8]. 

The SVM is trained with binary class labels for relevant and 
irrelevant classes and we use the SVM’s predicted margins during 
testing for scoring sections.  

In some sense, we identify related concept words to the query 
based on term frequency and proximity statistics. We then build 
query independent features based on occurrence of these high 
frequency words of the top K results, in the section to be classified.  
We begin by discussing some related research in Section 2. In 
Section 3, we first present a high level overview of the SQUINT 
framework and then subsequently drill down into the individual 
sub components in the framework. In section 4, we report results 
obtained during the training and test phases for various 
experimental settings. In section 5, we present some insights into 
the problem that we gained during the course of our 
experimentation. We end with section 6, where we present our 
conclusions and possible future directions for research. 

2. Related Work 
 

Gelbukh et al. [1] have presented a model for recognition of 
relevant passages in text, using relevance measures and structural 
integrity. Liu and Croft [2] have explored passage retrieval using a 
language and relevance model. This problem finds applications in 
web-question answering and summary generation, and has been 



addressed in these contexts in [3], [4], [5]. Yu et al. [6] discuss a 
Vision-based Page Segmentation (VIPS) algorithm to detect the 
semantic content structure in the page, akin to identifying the 
sections. Teevan et al. [7] have discussed search methodologies 
that focus more on contextual information than just keyword 
occurrences. 

 

3. Overall Architecture 
As shown in Fig.1 below, the training phase begins with querying 
Google and receiving the ranked set of relevant pages. These pages 
are then cleaned and split by the Page Processor module, which 
outputs a set of sections. The Feature Generator then computes the 
features for each section. Every section is then manually labelled in 
the labelling phase. We use a binary labelling scheme where the 
labels are +1(relevant) and -1(irrelevant). The output of these two 
phases gives us the training set, which is used to train the SVM. 

After learning is complete, we proceed to the testing phase where, 
given a query and a set of result pages, we are able to score the 
sections in the result pages based on the features we extract from 
the result set. The SVM’s predicted margins are used as scores 
here. 

 
Figure 1: SQUINT – High level view of the framework 

 
3.1. Feature Generation 
In order to effectively score sections of a web page using the SVM, 
we need to select features that capture each section’s 
characteristics. Among the information extracted from sections, the 
frequency of certain ‘important’ words and the location and 
frequency of the query words are considered to be useful indicators 
of relevance to the queried topic. The intuition here is that certain 
words which are strongly related to the topic will occur frequently 
in relevant sections, and also relevant sections are located near the 
query words. In the proposed method, we currently have five 
possible types of features that capture word frequency and word 
location. 

 

3.1.1. Word Rank Based Features 

We define the rank of a word to be its position in the list if the 
words were ordered by frequency of occurrence in the top K 
results. We would have a feature each for say, the top 300 most 
frequent words in the top K results.  For the ith ranked word, this 
feature would basically have the value for the frequency of this 
word in the current section. One possible option that we have to 
limit the dimensionality of the input vector is by bucketing words 
by a certain range of ranks. For example, we can bucket ranks 1-5, 
6-10, 11-15...etc to aggregate word counts, and come up with a 
feature vector of reduced dimensionality. Another option for 
limiting the dimensionality of the input vector is to simply limit the 
range of ranks that appear in the vector. Figure 2 shows the effect 
of dimensionality reduction on the accuracy of the test result. 
Bucket size here is 1 since it worked the best among various bucket 
sizes tried. After testing various settings for bucketing and the 
range of ranks, we decided to use a bucket size of 1 and rank 
coverage of 150 which achieved the highest accuracy. In other 
words, we use top 150 ranking words with no bucketing. We also 
normalize for the length of the section since we do not want to be 
biased towards long sections. 

 
Figure 2: Dimensionality Reduction in Word Rank Features 

 

3.1.2. Bigram Rank Based Features 

We define a bigram to be two consecutive words occurring in a 
section. This feature is computed in a manner similar to the 
previous set of features. This feature is based on the intuition that 
the correlation between two words might be more informative than 
the words taken individually. For instance, "machine learning" 
suggests a stronger relation to a query "AI SVM" than the 
individual words "machine" or "learning". For this feature as well, 
we adjust the dimensionality by bucketing and limiting coverage of 
ranks. Figure 3 shows the effect of dimensionality reduction on 
accuracy. A bucket size of 1 worked best for this feature as well. 
From these results, we decided to use a bucket size 1 and rank 
coverage 50. 

 
Figure 3: Dimensionality Reduction in Bigram Rank Features 



 

3.1.3. Coverage of Top Ranked Tokens 

Relevance to a topic may also be captured by the coverage of top 
ranked token types in the section. For example, if we have a bucket 
size of 5, we might be interested in knowing how many of the top 5 
ranked words occur in this section, how many of the next 5 highly 
ranked words occur in this section and so forth. Specifically, if the 
top 5 ranked token types are "learning", "machine", "data", 
"access", and "database", and a section contained "learning" and 
"data", the corresponding value for this feature is 2. We use bucket 
size of 5 and dimensionality of 30 for this feature. 

 

3.1.4. Distance from the Query 

The intuition here is that the closer a section is to the query in the 
Web page, the more likely it is to be relevant. Thus we compute the 
section-wise distance between the section in question and the 
nearest section which contains the query. We feel that although this 
is not a necessary condition for relevance, it could well be a 
sufficient one. An ablative analysis with respect to this feature 
confirmed this intuition. 

 

3.1.5. Query Word Frequency 

Last but not the least, the frequency of the query word in the 
section seems a reasonable indicator for relevance. Since there are 
many possible ways to evaluate importance of query word 
appearance, we tried two types of measurements for this feature. 
First, we used the query term frequency in the section. In this 
setting, if there are 3 query words that appear in a section, the 
count is 3 normalized by the number of words in the section. 
Second, we used a sum of weighted counts based on the distance 
from the beginning of the section. Research from text 
summarization has shown that typically the gist of a paragraph is 
given by its first few sentences. In other words, a match in the first 
few words of a section counts more than a match much lower down 
in the section. Weighted count is computed by the following 
equation. 

 
In other words, we discount the count linearly as a query word 
occurs in the latter part of the section. For instance, if a query word 
occur as the 20th word, and the total number of words in the section 
is 100, the weighted count is 0.8. After testing both settings, we 
decided to use the weighted count setting. 

 

3.1.6. The Final Set of Features 

The features discussed thus far are generated for each section in the 
top K result pages obtained by querying Google. We put the 
features together and evaluated each setting by comparing K-Fold 
Cross validation accuracy to decide the optimal combination of the 
features. After feature selection, we decided to use the set of 
features shown in table 1. We will explain the details of feature 
selection in 3.4.3. 

Table 1: The Final Set of Features 

Feature Name Parameters 

Rank Based Dimensionality: 150 

No Bucketing 

Bigram Frequency Based Dimensionality: 50 

No Bucketing 

Coverage of Tokens Dimensionality: 30 

Distance from the Query Dimensionality: 1 

 
3.2. Training Set Generation 
The training set required is a set of sections of web pages and 
corresponding binary labels indicating +1(relevant) and -
1(irrelevant). We created the training set by hand labelling the 
sections of pages returned by Google on a few sample queries. The 
basic steps are, 

1. Query Google to get a set of pages 
2. Clean each page – remove scripts, pictures, links etc. 
3. Break each page into sections. 
4. Label each section of every page. 

 

Step 1 uses the GoogleSoapSearchAPI. A quick way to do step 2 is 
to get a Lynx dump of the web page. Lynx being a text based 
browser cleans up scripts and pictures, and gives text with 
numbered parts, where each part is a distinct html element. We use 
this for Step 3. The page is broken up into candidate sections based 
on the numbering. Candidates which have less than 2 lines of text 
are eliminated, as we are only interested in significant chunks of 
text. Lynx also groups all the links on the page under ‘Visible 
Links’ or ‘References’, both of which are removed. 

One caveat here is that we need to distinguish between training 
labels and test labels. For training, we hand labelled every section 
as +1 (relevant) or -1 (irrelevant). During testing, our task is 
actually to detect on a per page basis, the most relevant section in 
that page. Therefore our labelling is slightly different. For every 
page, the most relevant section(s) is(are) labelled as 1, while all 
others are labelled as 0. Note that we label the test set for the 
purposes of evaluation only. 

We generated the data set from 6 queries – “machine learning”, 
“gene sequencing”, “oregon missing family”, “space shuttle 
discovery launch”, “ipod nano” and “google buys youtube”.  

 

3.3. Learning Algorithm 
As mentioned earlier, we use a Support Vector Machine with a 
linear kernel to learn to detect the most relevant section in a given 
page, using the training set mentioned in the preceding section. 
The training set contains results for 6 queries which comprises of 
94 web pages and 775 sections. Given the relatively high 
dimensionality of our feature vector, it is a reasonable choice to use 
an SVM. Note that our purpose is to specify the most relevant 
section, not just classify many relevant sections. To get a non-
binary metric of how relevant sections are, we use the predicted 
margins for each sample. In other words, given parameter w and 
feature vector x, we detect a sample that has the largest wTx as the 
most relevant section in the page. Also note that the way the 
learning algorithm deals with data is different between the training 
phase and the test phase. In the training phase, all the result pages 
for a query are processed all at once, but in the test phase, the 
algorithm examines the data, page by page, to determine the most 
relevant sections for each page. 

 



4. Evaluation 
We evaluate the performance of the learning algorithm using four 
common metrics namely, K-fold Cross validation, learning curve 
with respect to number of training data, ablative analysis for 
features, manual error analysis. In each case, we use three different 
settings for the evaluation – strict, relax 2 and relax 3. 

These three settings can best be explained with an example. Let s1, 
s2 and s3 be the top three highest scoring sections in a particular 
page p, as returned by the SVM.  

 
Under the strict setting, a result is deemed correct only if s1 is the 
most relevant section in the page, as indicated from the labelling in 
the test data. Under relax 2, the result is deemed correct if either s1 
or s2 is the most relevant section in the page. Similarly, for relax 3, 
the result is correct if either s1 or s2 or s3 is the most relevant 
section in the page. 

 

4.1 K-fold Cross validation 

We do k-fold cross validation with k = 6. The 6 datasets were the 
results for the 6 queries. We evaluate the accuracy for the strict, 
relax 2 and relax 3 settings. In each case, we first evaluate the 
accuracy per query as the percentage of pages within the query for 
which the SVM returned a correct result. The k-fold accuracy is 
then the average of the accuracies obtained for all the 6 queries. 
The following results were obtained. 

Table 2: K-fold Accuracy for the Best Configuration 

Best Configuration k fold accuracy 

Strict 60.60% 

relax 2 80.95% 

relax 3 90.47% 

 

  

4.2 Learning curve 

We examine how much training data we need, to get reasonable 
accuracy by plotting the learning curve with respect to the number 
of training examples. The horizontal axis is the size of training set, 
and the vertical axis is the accuracy as measured by k-fold cross 
validation. 

 
Figure 4: Learning Curve 

 

4.3 Forward feature search 

We also measured the significance of each feature through forward 
search on the feature set.  We started with the base case (lower 
bound), where the algorithm randomly picks a section as the most 
relevant.  We added the frequency-based features (word frequency 
and bigram frequency) next, followed by coverage and distance 
from the query. The last feature added was the frequency of the 
query word in the section. We were able to eliminate the section 
size feature, since we observed that we did not get any gain in 
accuracy by the use of this feature.  

The following chart shows the results of the forward search. 1 
indicates the frequency based features, 2 indicates the coverage of 
top ranking words, 3 is the distance of the section from the query 
and 4 is the frequency of the query terms in the section. 
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Figure 5: Forward Feature Search 

 

An unexpected observation was that the use of the query frequency 
feature actually marginally hurt the accuracy of prediction under 
the strict and relax 2 settings. We hypothesize that the lack of a 
gain in accuracy with this feature could be because this information 
is captured somewhat noisily by the rank frequency and coverage 
features. 

 

5. Insights 
There might appear to be a potential problem for SQUINT in the 
case of queries which result in unequally sized clusters in the result 
set. For example, for the query “Michael Jordan” one might expect 
a majority of the results returned to talk about the basket ball 
player. However, we would like to identify sections mentioning the 
Professor from Berkeley as also relevant. Given the current 
SQUINT framework it seems reasonable to expect that it will be 
highly unlikely that relevant sections belonging to the minority 
cluster will be correctly identified. However, we claim that this 
problem is orthogonal to the one SQUINT attempts to solve and 
the preceding scenario can be easily resolved by allowing SQUINT 
to operate on a per cluster basis. 

Another observation we made was that the frequency based 
features were not as useful as we had hoped. In fact, the word 
coverage feature is more critical to the accuracy of the scoring. We 
think that this might be explained by the fact that since we do not 
do idf weighting, our frequency features are susceptible to noise 
resulting from low-idf words. We do stop word filtering but that 
may not be enough. The coverage feature is a little less susceptible 
to this effect since it is bucketed and on inspection of the most 



frequent words more often than not the top ranking words are 
words that are highly correlated with the query. 

Given the limited size of our training set, we attempted to reduce 
the dimensionality of some of our features. As shown in an earlier 
section, we observed that reducing the dimensionality did give us 
gains in accuracy, presumably because of the reduced number of 
parameters that need to be fit for the training set. 

We realize that there are quite a few reasonable extensions to our 
feature set. We intend to explore some of these in the future. One 
obvious upgrade to our suite of frequency features is to weight it 
by idf. In addition, the query frequency features can be encoded in 
a number of ways. For example, we could have a feature that looks 
for all the words in the query to occur within a specified window of 
words and counts occurrences only when the query words occur 
within that window. One can imagine that this might be useful for 
a query like “data mining”, wherein if the words “data” and 
“mining” occur far apart, the meaning conveyed is not quite the 
same as the query. One can also imagine designing features that 
penalize absence of any of the query words in the section. Many of 
these features are similar to the query based features that a Web 
Search Engine or any information retrieval system might employ.  

Another interesting observation that we made was that the 
relevance of a section did not seem to be too correlated with the 
length of the section. The use of the length feature did not hurt 
accuracy but it did not give us noticeable gains either. 

We realize that SQUINT offers a value add for a specific category 
of queries in Web Search and information retrieval namely, 
'information seeking' queries.  In such queries, the focus of the 
query is reasonably broad and good result pages comprise many 
sections of text. For example, 'gene sequencing'. However, for say 
commercial queries, where a good result page is a home page of a 
dealer or a hub page with lots of outgoing links, graphics and 
animation, the value add is questionable. 

 

5. Conclusion and Future work 
We proposed SQUINT, an SVM based approach to identify 
relevant sections in a Web page to a user's search query. This 
problem has been relatively less studied in the literature, but we 
believe that its solution will have a large impact on the user's 
overall search experience. As a result of our evaluation, we see that 
using information retrieval inspired features and some basic hints 
from summarization give respectable accuracy with respect to 
detecting the most relevant section in a page. Some possible future 
directions include qualitative comparisons of the summaries 
generated using SQUINT with the snippets generated by Web 
Search Engines and other summarization algorithms. It will also be 
interesting to evaluate the impact SQUINT has on user 
productivity with regard to satisfying user information need.  
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