
SQUINT – SVM for Identification of Relevant Sections in
Web Pages for Web Search

Siddharth Jonathan J.B.

Department of Computer Science
Stanford University

jonsid@stanford.edu

 Riku Inoue
Department of Computer Science

Stanford University
rikui@stanford.edu

Jyotika Prasad
Department of Computer Science

Stanford University
jyotika@stanford.edu

ABSTRACT

We propose SQUINT – an SVM based approach to identify
sections (paragraphs) of a Web page that are relevant to a query in
Web Search. SQUINT works by generating features from the top
most relevant results returned in response to a query from a Web
Search Engine, to learn more about the query and its context. It
then uses an SVM with a linear kernel to score sections of a Web
page based on these features. One application of SQUINT we can
think of is some form of highlighting of the sections to indicate
which section is most likely to be interesting to the user given his
query. If the result page has a lot of (possibly diverse) content
sections, this could be very useful to the user in terms of reducing
his time to get the information he needs. Another advantage of this
scheme as compared to simple search term highlighting is that, it
would even score sections which do not mention the key word at
all. We also think SQUINT could be used to generate better
summaries for queries in Web Search. One can also envision
SQUINT as being able to create succinct summaries of pages of
results, by pulling out the most relevant section in each page and
creating a meta summary page of the results. The training set for
SQUINT is generated by querying a Web Search Engine and hand
labelling sections. Preliminary evaluations of SQUINT by K-fold
cross validation appear promising. We also analyzed the effect of
feature dimensionality reduction on performance. We conclude
with some insights into the problem and possible directions for
future research.

Keywords
Artificial Intelligence, Machine Learning, Supervised Learning,
SQUINT, Information Retrieval, Web Search, Support Vector
Machine.

1. INTRODUCTION
Currently for Web Search, the de-facto model is that a user inputs a
query and gets multiple pages of links to results. Then the user,
based on the snippets that he sees, clicks on one of the results. The
result page could have a lot of content in it and it is left to the user
to figure out where in the page, his answer to the query lies. Some
shallow techniques that search engines at times use to offset this
problem are to highlight the search terms in the document.
Although this is a step in the right direction, the results are often
very unsatisfactory especially if the search term is not a very
differentiating term or if it does not appear in the section at all.

In this paper, we propose SQUINT, an SVM based approach for
identifying the sections in a web page relevant to a user's query to
help the user jump right into the most relevant section of the Web
page. Here, we define a section to be a paragraph. SQUINT works
by making use of the top K results returned in response to a query
from a Web Search Engine (We use the Google API), to learn more
about the query and its context.

The problem can be formalized as follows. Given a query Q, a
standard Web search engine returns a set of pages ranked in
descending order of relevance. We call this set, P. Given P, let S be
the set of all sections in every page in P.

S = {s; s is a section in some page in P}

Given Q, we generate S, and use it to train a Support Vector
Machine. During testing, given a particular section, we can predict
a numerical score indicative of the relevance of the section to the
query, Q. The scores of all the sections in a page with respect to a
query enforce an ordering among the sections in terms of relevance
to the query. We use an SVM with a linear kernel in SQUINT.
Support Vector Machines have been shown to work very well for
high dimensional learning problems similar to the ones
encountered when dealing with text [8].

The SVM is trained with binary class labels for relevant and
irrelevant classes and we use the SVM’s predicted margins during
testing for scoring sections.

In some sense, we identify related concept words to the query
based on term frequency and proximity statistics. We then build
query independent features based on occurrence of these high
frequency words of the top K results, in the section to be classified.
We begin by discussing some related research in Section 2. In
Section 3, we first present a high level overview of the SQUINT
framework and then subsequently drill down into the individual
sub components in the framework. In section 4, we report results
obtained during the training and test phases for various
experimental settings. In section 5, we present some insights into
the problem that we gained during the course of our
experimentation. We end with section 6, where we present our
conclusions and possible future directions for research.

2. Related Work

Gelbukh et al. [1] have presented a model for recognition of
relevant passages in text, using relevance measures and structural
integrity. Liu and Croft [2] have explored passage retrieval using a
language and relevance model. This problem finds applications in
web-question answering and summary generation, and has been

addressed in these contexts in [3], [4], [5]. Yu et al. [6] discuss a
Vision-based Page Segmentation (VIPS) algorithm to detect the
semantic content structure in the page, akin to identifying the
sections. Teevan et al. [7] have discussed search methodologies
that focus more on contextual information than just keyword
occurrences.

3. Overall Architecture
As shown in Fig.1 below, the training phase begins with querying
Google and receiving the ranked set of relevant pages. These pages
are then cleaned and split by the Page Processor module, which
outputs a set of sections. The Feature Generator then computes the
features for each section. Every section is then manually labelled in
the labelling phase. We use a binary labelling scheme where the
labels are +1(relevant) and -1(irrelevant). The output of these two
phases gives us the training set, which is used to train the SVM.

After learning is complete, we proceed to the testing phase where,
given a query and a set of result pages, we are able to score the
sections in the result pages based on the features we extract from
the result set. The SVM’s predicted margins are used as scores
here.

Figure 1: SQUINT – High level view of the framework

3.1. Feature Generation
In order to effectively score sections of a web page using the SVM,
we need to select features that capture each section’s
characteristics. Among the information extracted from sections, the
frequency of certain ‘important’ words and the location and
frequency of the query words are considered to be useful indicators
of relevance to the queried topic. The intuition here is that certain
words which are strongly related to the topic will occur frequently
in relevant sections, and also relevant sections are located near the
query words. In the proposed method, we currently have five
possible types of features that capture word frequency and word
location.

3.1.1. Word Rank Based Features

We define the rank of a word to be its position in the list if the
words were ordered by frequency of occurrence in the top K
results. We would have a feature each for say, the top 300 most
frequent words in the top K results. For the ith ranked word, this
feature would basically have the value for the frequency of this
word in the current section. One possible option that we have to
limit the dimensionality of the input vector is by bucketing words
by a certain range of ranks. For example, we can bucket ranks 1-5,
6-10, 11-15...etc to aggregate word counts, and come up with a
feature vector of reduced dimensionality. Another option for
limiting the dimensionality of the input vector is to simply limit the
range of ranks that appear in the vector. Figure 2 shows the effect
of dimensionality reduction on the accuracy of the test result.
Bucket size here is 1 since it worked the best among various bucket
sizes tried. After testing various settings for bucketing and the
range of ranks, we decided to use a bucket size of 1 and rank
coverage of 150 which achieved the highest accuracy. In other
words, we use top 150 ranking words with no bucketing. We also
normalize for the length of the section since we do not want to be
biased towards long sections.

Figure 2: Dimensionality Reduction in Word Rank Features

3.1.2. Bigram Rank Based Features

We define a bigram to be two consecutive words occurring in a
section. This feature is computed in a manner similar to the
previous set of features. This feature is based on the intuition that
the correlation between two words might be more informative than
the words taken individually. For instance, "machine learning"
suggests a stronger relation to a query "AI SVM" than the
individual words "machine" or "learning". For this feature as well,
we adjust the dimensionality by bucketing and limiting coverage of
ranks. Figure 3 shows the effect of dimensionality reduction on
accuracy. A bucket size of 1 worked best for this feature as well.
From these results, we decided to use a bucket size 1 and rank
coverage 50.

Figure 3: Dimensionality Reduction in Bigram Rank Features

3.1.3. Coverage of Top Ranked Tokens

Relevance to a topic may also be captured by the coverage of top
ranked token types in the section. For example, if we have a bucket
size of 5, we might be interested in knowing how many of the top 5
ranked words occur in this section, how many of the next 5 highly
ranked words occur in this section and so forth. Specifically, if the
top 5 ranked token types are "learning", "machine", "data",
"access", and "database", and a section contained "learning" and
"data", the corresponding value for this feature is 2. We use bucket
size of 5 and dimensionality of 30 for this feature.

3.1.4. Distance from the Query

The intuition here is that the closer a section is to the query in the
Web page, the more likely it is to be relevant. Thus we compute the
section-wise distance between the section in question and the
nearest section which contains the query. We feel that although this
is not a necessary condition for relevance, it could well be a
sufficient one. An ablative analysis with respect to this feature
confirmed this intuition.

3.1.5. Query Word Frequency

Last but not the least, the frequency of the query word in the
section seems a reasonable indicator for relevance. Since there are
many possible ways to evaluate importance of query word
appearance, we tried two types of measurements for this feature.
First, we used the query term frequency in the section. In this
setting, if there are 3 query words that appear in a section, the
count is 3 normalized by the number of words in the section.
Second, we used a sum of weighted counts based on the distance
from the beginning of the section. Research from text
summarization has shown that typically the gist of a paragraph is
given by its first few sentences. In other words, a match in the first
few words of a section counts more than a match much lower down
in the section. Weighted count is computed by the following
equation.

In other words, we discount the count linearly as a query word
occurs in the latter part of the section. For instance, if a query word
occur as the 20th word, and the total number of words in the section
is 100, the weighted count is 0.8. After testing both settings, we
decided to use the weighted count setting.

3.1.6. The Final Set of Features

The features discussed thus far are generated for each section in the
top K result pages obtained by querying Google. We put the
features together and evaluated each setting by comparing K-Fold
Cross validation accuracy to decide the optimal combination of the
features. After feature selection, we decided to use the set of
features shown in table 1. We will explain the details of feature
selection in 3.4.3.

Table 1: The Final Set of Features

Feature Name Parameters

Rank Based Dimensionality: 150

No Bucketing

Bigram Frequency Based Dimensionality: 50

No Bucketing

Coverage of Tokens Dimensionality: 30

Distance from the Query Dimensionality: 1

3.2. Training Set Generation
The training set required is a set of sections of web pages and
corresponding binary labels indicating +1(relevant) and -
1(irrelevant). We created the training set by hand labelling the
sections of pages returned by Google on a few sample queries. The
basic steps are,

1. Query Google to get a set of pages
2. Clean each page – remove scripts, pictures, links etc.
3. Break each page into sections.
4. Label each section of every page.

Step 1 uses the GoogleSoapSearchAPI. A quick way to do step 2 is
to get a Lynx dump of the web page. Lynx being a text based
browser cleans up scripts and pictures, and gives text with
numbered parts, where each part is a distinct html element. We use
this for Step 3. The page is broken up into candidate sections based
on the numbering. Candidates which have less than 2 lines of text
are eliminated, as we are only interested in significant chunks of
text. Lynx also groups all the links on the page under ‘Visible
Links’ or ‘References’, both of which are removed.

One caveat here is that we need to distinguish between training
labels and test labels. For training, we hand labelled every section
as +1 (relevant) or -1 (irrelevant). During testing, our task is
actually to detect on a per page basis, the most relevant section in
that page. Therefore our labelling is slightly different. For every
page, the most relevant section(s) is(are) labelled as 1, while all
others are labelled as 0. Note that we label the test set for the
purposes of evaluation only.

We generated the data set from 6 queries – “machine learning”,
“gene sequencing”, “oregon missing family”, “space shuttle
discovery launch”, “ipod nano” and “google buys youtube”.

3.3. Learning Algorithm
As mentioned earlier, we use a Support Vector Machine with a
linear kernel to learn to detect the most relevant section in a given
page, using the training set mentioned in the preceding section.
The training set contains results for 6 queries which comprises of
94 web pages and 775 sections. Given the relatively high
dimensionality of our feature vector, it is a reasonable choice to use
an SVM. Note that our purpose is to specify the most relevant
section, not just classify many relevant sections. To get a non-
binary metric of how relevant sections are, we use the predicted
margins for each sample. In other words, given parameter w and
feature vector x, we detect a sample that has the largest wTx as the
most relevant section in the page. Also note that the way the
learning algorithm deals with data is different between the training
phase and the test phase. In the training phase, all the result pages
for a query are processed all at once, but in the test phase, the
algorithm examines the data, page by page, to determine the most
relevant sections for each page.

4. Evaluation
We evaluate the performance of the learning algorithm using four
common metrics namely, K-fold Cross validation, learning curve
with respect to number of training data, ablative analysis for
features, manual error analysis. In each case, we use three different
settings for the evaluation – strict, relax 2 and relax 3.

These three settings can best be explained with an example. Let s1,
s2 and s3 be the top three highest scoring sections in a particular
page p, as returned by the SVM.

Under the strict setting, a result is deemed correct only if s1 is the
most relevant section in the page, as indicated from the labelling in
the test data. Under relax 2, the result is deemed correct if either s1
or s2 is the most relevant section in the page. Similarly, for relax 3,
the result is correct if either s1 or s2 or s3 is the most relevant
section in the page.

4.1 K-fold Cross validation

We do k-fold cross validation with k = 6. The 6 datasets were the
results for the 6 queries. We evaluate the accuracy for the strict,
relax 2 and relax 3 settings. In each case, we first evaluate the
accuracy per query as the percentage of pages within the query for
which the SVM returned a correct result. The k-fold accuracy is
then the average of the accuracies obtained for all the 6 queries.
The following results were obtained.

Table 2: K-fold Accuracy for the Best Configuration

Best Configuration k fold accuracy

Strict 60.60%

relax 2 80.95%

relax 3 90.47%

4.2 Learning curve

We examine how much training data we need, to get reasonable
accuracy by plotting the learning curve with respect to the number
of training examples. The horizontal axis is the size of training set,
and the vertical axis is the accuracy as measured by k-fold cross
validation.

Figure 4: Learning Curve

4.3 Forward feature search

We also measured the significance of each feature through forward
search on the feature set. We started with the base case (lower
bound), where the algorithm randomly picks a section as the most
relevant. We added the frequency-based features (word frequency
and bigram frequency) next, followed by coverage and distance
from the query. The last feature added was the frequency of the
query word in the section. We were able to eliminate the section
size feature, since we observed that we did not get any gain in
accuracy by the use of this feature.

The following chart shows the results of the forward search. 1
indicates the frequency based features, 2 indicates the coverage of
top ranking words, 3 is the distance of the section from the query
and 4 is the frequency of the query terms in the section.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Base Case 1 1, 2 1, 2, 3 1, 2, 3, 4

Feature Sets

A
cc

ur
ac

y

Strict
Relax-2
Relax-3

Figure 5: Forward Feature Search

An unexpected observation was that the use of the query frequency
feature actually marginally hurt the accuracy of prediction under
the strict and relax 2 settings. We hypothesize that the lack of a
gain in accuracy with this feature could be because this information
is captured somewhat noisily by the rank frequency and coverage
features.

5. Insights
There might appear to be a potential problem for SQUINT in the
case of queries which result in unequally sized clusters in the result
set. For example, for the query “Michael Jordan” one might expect
a majority of the results returned to talk about the basket ball
player. However, we would like to identify sections mentioning the
Professor from Berkeley as also relevant. Given the current
SQUINT framework it seems reasonable to expect that it will be
highly unlikely that relevant sections belonging to the minority
cluster will be correctly identified. However, we claim that this
problem is orthogonal to the one SQUINT attempts to solve and
the preceding scenario can be easily resolved by allowing SQUINT
to operate on a per cluster basis.

Another observation we made was that the frequency based
features were not as useful as we had hoped. In fact, the word
coverage feature is more critical to the accuracy of the scoring. We
think that this might be explained by the fact that since we do not
do idf weighting, our frequency features are susceptible to noise
resulting from low-idf words. We do stop word filtering but that
may not be enough. The coverage feature is a little less susceptible
to this effect since it is bucketed and on inspection of the most

frequent words more often than not the top ranking words are
words that are highly correlated with the query.

Given the limited size of our training set, we attempted to reduce
the dimensionality of some of our features. As shown in an earlier
section, we observed that reducing the dimensionality did give us
gains in accuracy, presumably because of the reduced number of
parameters that need to be fit for the training set.

We realize that there are quite a few reasonable extensions to our
feature set. We intend to explore some of these in the future. One
obvious upgrade to our suite of frequency features is to weight it
by idf. In addition, the query frequency features can be encoded in
a number of ways. For example, we could have a feature that looks
for all the words in the query to occur within a specified window of
words and counts occurrences only when the query words occur
within that window. One can imagine that this might be useful for
a query like “data mining”, wherein if the words “data” and
“mining” occur far apart, the meaning conveyed is not quite the
same as the query. One can also imagine designing features that
penalize absence of any of the query words in the section. Many of
these features are similar to the query based features that a Web
Search Engine or any information retrieval system might employ.

Another interesting observation that we made was that the
relevance of a section did not seem to be too correlated with the
length of the section. The use of the length feature did not hurt
accuracy but it did not give us noticeable gains either.

We realize that SQUINT offers a value add for a specific category
of queries in Web Search and information retrieval namely,
'information seeking' queries. In such queries, the focus of the
query is reasonably broad and good result pages comprise many
sections of text. For example, 'gene sequencing'. However, for say
commercial queries, where a good result page is a home page of a
dealer or a hub page with lots of outgoing links, graphics and
animation, the value add is questionable.

5. Conclusion and Future work
We proposed SQUINT, an SVM based approach to identify
relevant sections in a Web page to a user's search query. This
problem has been relatively less studied in the literature, but we
believe that its solution will have a large impact on the user's
overall search experience. As a result of our evaluation, we see that
using information retrieval inspired features and some basic hints
from summarization give respectable accuracy with respect to
detecting the most relevant section in a page. Some possible future
directions include qualitative comparisons of the summaries
generated using SQUINT with the snippets generated by Web
Search Engines and other summarization algorithms. It will also be
interesting to evaluate the impact SQUINT has on user
productivity with regard to satisfying user information need.

Acknowledgements:
The authors would like to thank Prof. Ng, Jeremy Kolter, Samuel
Ieong, Catie Chang, Haidong Wang and Eric Delage for their
support and feedback throughout the course of the project. We also
wish to thank Dr.Andreas Paepcke of the Stanford InfoLab for his
insightful comments and suggestions.

REFERENCES
[1] Alexander Gelbukh, NamO Kang, and SangYong Han.

Combining Sources of Evidence for Recognition of Relevant
Passages in Texts. ISSADS 2005, pp. 283–290, 2005

[2] Xiaoyong Liu, W. Bruce Croft. Passage retrieval based on
language models. In Proceedings of the eleventh international
conference on Information and knowledge management. pp.
375 – 382, 2002.

[3] Jimmy Lin, Aaron Fernandes, Boris Katz, Gregory Marton,
Stefanie Tellex. Extracting Answers from the Web Using
Knowledge Annotation and Knowledge Mining Techniques.
In Proceedings of the Eleventh Text REtrieval Conference
(TREC 2002), Gaithersburg, Maryland, 2002.

[4] Brian Ulicny. Lycos Retriever: An Information Fusion Engine.
In Proceedings of the Human Language Technology
Conference of the North American Chapter of the ACL, pp.
177–180, June 2006.

[5] Hang Cui, Renxu Sun, Keya Li, Min-Yen Kan, Tat-Seng
Chua. Question answering passage retrieval using dependency
relations. In Proceedings of the 28th annual international
ACM SIGIR conference on Research and development. pp.
400 – 407, 2005.

[6] Shipeng Yu, Deng Cai, Ji-Rong Wen, Wei-Ying Ma.
 Improving Pseudo-Relevance Feedback in Web Information
 Retrieval Using Web Page Segmentation. In Proceedings of
 the 12th international conference on World Wide Web. pp.
 11-18, May 2003.
[7] Jaime Teevan, Christine Alvarado, Mark S. Ackerman and
 David R. Karger. The Perfect Search Engine Is Not Enough:
 A Study of Orienteering Behavior in Directed Search. In
 Proceedings of the SIGCHI conference on Human factors in
 computing systems. pp. 415-422, April 2004.
 [8] Thorsten Joachims, Text Categorization with Support
 Vector Machines – Learning with many relevant features.
 In Proceedings of the 10th European Conference on
 Machine Learning pp. 137-142, 1998.
[9] Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library
 for support vector machines, 2001. Software available at
 http://www.csie.ntu.edu.tw/~cjlin/libsv

