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ABSTRACT 
 
 Different types of bacteria have different cell shapes. In particular, Caulobacter 
crescentus is a crescent-shaped bacterium that undergoes asymmetric division to give a 
motile swarmer cell and a sessile stalked cell. However, when some genes are mutated, 
its morphology may be affected in a variety of ways. For example, the bacterium may 
grow filamentous or become rod-shaped. Our goal was to write a program that could 
decide whether a given image shows wild type or mutant cells. We used the discrete 
cosine transformation (DCT) and its principal components as the feature space to 
differentiate between wild type cells and mutant cells in general. We found that the 
projection vectors of abnormally shaped cells to those of wild type cells had different 
distributions. We also used locally weighted linear regression to successfully classify 
wild type crescent-shaped cells and mutant lemon-shaped cells. Future work includes 
extending the program to automatically identify protein mislocalization mutants from 
both phase contrast and fluorescence images.  
 
INTRODUCTION 
  

 
Figure 1. (A) A schematic of the different stages of the Caulobacter cell cycle (adapted from Skerker 
and Laub, 2004).  (B) The cell's appearance under the microscope over the course of the cell cycle. 

  
Caulobacter crescentus is an aquatic, non-pathogenic bacterium that has a distinct 

crescent shape. It serves as a model organism for studying both the prokaryotic cell cycle 
and how bacteria establish and maintain cellular asymmetry. As it progresses through the 
cell cycle, it elongates and pinches off in the middle to give two daughter cells - a smaller 
motile swarmer cell and a larger sessile stalked cell (Figure 1A). Since the bacterium 
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looks different under the microscope at different stage of the cell cycle (Figure 1B), we 
can use its morphology as a means for us to track its life progression.  

 
We can use morphology to determine if the cells are normal or abnormal. Wild 

type Caulobacter cells have a stereotypical crescent shape and size (Figure 2A). In some 
mutants, cell division cannot occur. Instead, they grow filamentous and look abnormally 
long (Figure 2B). In other cases, the deletion of certain genes or the mislocalization of 
certain proteins causes polar defects (Figure 2C). Furthermore, when intracellular 
structural proteins are disrupted, the cells can lose its crescent shape and look like lemons 
(Figure 2D). Hence, we aimed to write a program, based on machine learning, that 
could take in phase contrast images and tell us if the image contains wild type or mutant 
cells. 
 

 
Figure 2. Cell morphology. 

 
RESULTS AND DISCUSSION 
 
Pre-processing of Images 
 

 
Figure 3. How we obtain individual cells from a phase contrast image. 
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We pre-processeed phase contrast images, each of which was 16-bit and of size 

1000 by 1000, to obtain segmented cell images (Figure 3). We used a Matlab built-in 
function called weiner2 for noise reduction. (We also tried the Canny edge detector, but it 
did not work very well on the input images.) Each image was segmented by thresholding. 
Cells were copied to individual boxes and oriented, so that the crescent side of each cell 
faced the right hand side. The brightness and contrast level were adjusted, so that the 
maximum brightness was 1 and the background level was 0.  
 
Classification by principal components 
 

We first tried to use Zernike moments to represent the segmented cell images. 
Zernike first proposed the Zernike polynomials in 1934. The moment formulation  
appeared to be very popular for image analysis and was able to outperform several 
alternatives in terms of noise resilience, information redundancy, and reconstruction 
capability (Teh and Chin, 1988.). However, we found that computation of the orthogonal 
Zernike moments was very slow. 

 
Instead, we used the 2D DCT to represent our segmented cell images. Like any 

Fourier-related transform, DCTs express a function or a signal in terms of a sum of 
sinusoids with different frequencies and amplitudes (Ahmed et al., 1974). The DCT is 
often used in signal and image processing, especially for lossy data compression, because 
it has a strong “energy compaction” property: most of the signal information tends to be 
concentrated in a few low-frequency components of the DCT. Indeed, we discarded all 
the higher frequencies from the DCT to reduce the original matrix of size 101 by 101 to a 
50 by 50 matrix (the error from discarding the higher frequencies was found to be 
insignificant). Then we calculated the principal components (PCs) of the feature vector. 
Figure 4 shows the first three PCs. The first PC seemed to be able to capture progression 
along the cell cycle fairly well. 
 

 
Figure 4. The first three PCs of wild type cell images. 

 
 We projected the feature vectors of both wild type and mutant cells to the first 
few principal vectors of wild type cells. The scatter plots of those projection vectors were 
different between wild type and mutant cells. For example, the distribution of ∆mreC 
cells was clearly distinguishable from that of wild type cells (Figure 5A). Cells 
expressing PleC-GFP were usually shorter than wild type, thereby resulting in a larger 
first PC (Figure 5B). 
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Figure 5. Scatter plots of the first two PCs for both wild type and mutant cells. 

 
  However, we were unable to use these principal components to classify 
wild type and mutant cells successfully. Although the first few PCs represented the cell 
shape of wild type cells quite well, they did not represent different types of mutant cells 
adequately, since the calculated PCs were optimized for expressing the cell shape of wild 
type cells. Figure 6 shows that the residual errors of the mutant test set are much bigger 
than those of the wild type test set.  
 

 
Figure 6. Histogram of residual errors. 

 
Classification by Locally Weighted Linear Regression 
 
 We decided to focus on classifying wild type crescent-shaped cells and mutant 
lemon-shaped cells. Clearly, the width distribution along the cell’s long axis was different 
between the wild type case and the mutant case (Figure 7). This formed the basis of our 
feature vector, which consisted of width measurements at 20 positions along the long 
axis. We also divided cells into two types – those that had started to pinch (swarmers and 
stalked cells) and those that were pinching (pre-divisional cells).  
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Figure 7. How the cell width varies along the long axis for both wild type and mutant cells. 

 
 We used locally weighted linear regression, so that the correct choice of features 
became less critical. Specifically, we wanted to minimize  
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where τ was the bandwidth parameter.  
 
 

 
Figure 8. Size distributions of cresent-shaped and lemon-shaped cells. 
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 We performed hold-out cross-validation. Our training set consisted of 402 wild 
type cells and 399 mutant cells. The results are given in Table 1, which shows that the 
program can differentiate between wild type and mutant cells. Furthermore, Figure 8 
shows that crescent-shaped cells and lemon-shaped cells have different fits.  
 
 Wild type cells Mutant cells 
Classified as wild type 235 76 
Classified as mutant 7 233 
 
FUTURE WORK 
 

This research is still work-in-progress. Firstly, we want the program to be able to 
successfully classify other types morphology mutants, as shown in Figure 2. Secondly, 
we want to extend the program, so that it can automatically identify protein 
mislocalization mutants from both phase contrast and fluorescence images. A bacterial 
cell, although small, has well-defined compartments (for example midcell or the poles). 
Over the course of the cell cycle, different proteins localize to different positions in the 
cell (Figure 9). If we fluorescently tag the proteins, we can follow their localization 
patterns over the course of the cell cycle. We can then compare the pattern seen in wild 
type cells with the pattern in mutant cells. 
 

 
Figure 9. Schematic of the cell cycle localization pattern of ClpXP, a bacterial protease   

(adapted from Iniesta et al., 2006). 
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