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Abstract

We propose a learning-based framework for inferring the
3D pose of a person from monocular image sequences. We
generate a silhouette from each input image via a robust
background subtraction algorithm, and compute the corre-
sponding shape context descriptor using the shape context
algorithm. We compute the weighted average of neighbor
poses in a database to estimate the positions of different
body parts in the input image. We discuss several ways to
make the framework more robust.

1. Introduction
The estimation and tracking of 3D human body pose is a
challenging problem in computer vision. This problem has
important applications in a wide variety of areas such as
visual surveillance and human-computer interaction. With
tools to recover 3D human body pose from images, comput-
ers can model and recognize human behaviors and analyze
human body dynamics.

To make pose estimation more robust to ambiguities
resulting from occlusion of body parts, cluttered back-
grounds, varied clothing and other nuisance parameters, we
can use a range camera [1] or multiple cameras [2]. How-
ever, it is desirable to be able to estimate 3D poses using
monocular vision as the use of a multiple-camera setup or
a range camera is infeasible for many situations such as
surveillance and analysis of archived videos.

There are two types of approaches to the pose estima-
tion problem: example-based and model-based. Gener-
ally, example-based approaches utilize supervised learning
in which we store a set of training examples with known
3D poses, search for training examples similar to the given
input image, and interpolate from the set of poses corre-
sponding to the similar training images. In contrast, model-
based approaches assume an explicitly known parametric
body model, and estimate the pose either by directly in-
verting the kinematics or by numerically optimizing some
form of model-image correspondence metric over the pose
variables, using a forward rendering model to predict the
images.

We adopt an example-based approach in order to avoid
the use of complicated models and overcome the occlusion

problem. We use silhouettes with interior edge information
as they are invariant to many nuisance parameters such as
illumination, clothing, color and texture. These silhouettes
are represented by shape contexts [6], which are robust fea-
ture descriptors.

To estimate the pose in an input image given a database
of images with known 3D poses, we find shape context de-
scriptors whose distances from the context descriptor repre-
senting the pose in the input image are less than a specified
threshold. To estimate the parameters for the input pose, we
compute the weighted average of the body part positions
corresponding to these shape context descriptors.

2. Previous Work
There has been much recent work on the monocular pose
estimation problem. Sigal et al. [9] adopts a model-based
approach, eliminating the use of a database. This approach
uses a learned Mixtures of Experts (MoE) model to infer a
distribution of 3D poses conditioned on 2D poses. How-
ever, this approach is constrained to finding 3D pose in a
monocular image sequence, and does not work for a single
image. In addition, this approach makes assumptions about
a reasonable image likelihood model and the availability of
detectors for specific body parts. In [6], shape contexts are
used to represent the contour shape of the human body, re-
sulting in generally accurate pose estimation, but we can do
better by utilizing useful information relating to appearance
within a silhouette, such as the presence of body parts, es-
pecially the arms, within the silhouette. Also, this approach
has a high time complexity and can take several minutes for
the analysis of a single image. Hence it is infeasible for a
real-time system. In [7], parameter-sensitive hashing per-
mits possibly real-time pose estimation. The estimation of
3D pose from single input images gives rise to ambiguous
poses in some cases, but we can use a tracking framework
such as in [8] to mitigate this problem. Our approach to the
monocular pose estimation problem is similar to [8], but we
introduce interior edge information into silhouettes, and use
parameter-sensitive hashing to quickly infer the body joint
angles from a single image.

None of the approaches discussed so far take into ac-
count the problem of occlusion by foreign objects. The fea-
tures used to describe the pose can change drastically under
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occlusion. The bottom-up approaches, as described in [9],
which depend on finding the different body parts may fail
to operate under such cases. Hence, we model the effects
of occlusion explicitly in order to make the system more ro-
bust. We specifically investigate occlusions in five different
ways which can cover most of the scenarios we can come
across practically.

3. Pose Estimation
We propose a shape-context-based approach for the prob-
lem of pose estimation. Belongie et al. have used this con-
cept for matching shapes in [6]. For our purpose, we apply
this algorithm for finding the best matching image from our
training database. The entire procedure is divided into two
phases: the training and testing phases which are described
in sections 3.1 and 3.2 respectively.

3.1. Training Phase
In this phase, we use Vikram as the model for creating
the training database. 114 images were collected with him
standing in different poses. Artifacts such as shadow at-
tachment and background noise can significantly impact the
performance of our pose estimation system, as these arti-
facts distort the silhouettes. Hence, we require a robust
background subtraction algorithm. We use Tola’s imple-
mentation [3] of the kernel density estimation based back-
ground subtraction algorithm explained in [4], [5] to obtain
silhouettes. This algorithm is robust to background clut-
ter, changes in illumination, and shadows. Then we run the
shape context algorithm on these silhouettes.

3.1.1 Shape Contexts

The shape context algorithm treats a shape as a set of n
points. These points can be taken by doing sampling on the
silhouettes or edge images. From each of these n points,
we consider the vectors to the remaining n − 1 points.
These vectors are quantized into 60 bins on the basis of
their lengths and the angle they make with the horizontal.
Thus, for each of the n points, we obtain a histogram with
60 bins and each bin containing the number of vectors that
are closest to it in terms of (r, θ) co-ordinates. This process
is described for a single point in figure 1 with n = 350. In
figure 1(e), we divide the lengths of the vectors into 5 levels
by dividing each of them by the length of the longest vector.
The x-axis contains the 12 polar bins corresponding to each
of the 5 levels in ascending order.

The shape context of a single point gives information
about how the rest of the image looks with respect to it.
Hence, it is a rich descriptor of the overall shape of the im-
age. Now, the image is divided into 9 zones of equal size
as illustrated in figure 2(a). The mean of histograms of all

(a) (b) (c)

(d) (e)

Figure 1: (a) Original image of Vikram. (b) The corresponding
silhouette. (c) 350 points on the silhouette. (d) The 60 bins
used to quantize the vectors. (e) Shape context histogram for
the uppermost point in (c).

(a) (b)

Figure 2: (a) The division of the points into 9 zones. (b) The
final histogram for the image in figure 1(a).
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(a)

(b)

Figure 3: (a) The five images give an example of the five categories of occlusion. (b) Shape context histograms for each image.

points falling in the same zone is taken, and then all the 9
histograms are appended to create a final histogram of 540
bins representing the entire silhouette. This histogram is
taken as the feature vector for comparing the silhouettes.
The histogram corresponding to figure 1(c) is shown in fig-
ure 2(b).

3.1.2 Histograms for the Occluded Images

In addition to the histogram for the complete image, we
also compute 5 other histograms for occluded versions of
each image. The occluded images are created by artificially
blocking the images in the following 5 ways: (i) Right, (ii)
Left, (iii) Below, (iv) Left Bottom, and (v) Right Bottom.
For each of the five categories, we computed histograms by
occluding the original image to different extents and then
finding the mean of all the histograms. Figure 3(a) shows
one of the occluded images belonging to each of the five
categories and the corresponding shape context histograms
are shown in figure 3(b).

3.1.3 Labeling of Training Data

We hand-label the positions of the following body parts for
each silhouette in the training database: the head, hands,
shoulders, center of the body, and knees. We normalize the
coordinates of these positions so that we can use them with
test silhouettes of varying sizes. This normalization allows
us to use the training database for people standing at differ-
ent distances from the camera, and with different physiques.

3.2. Testing Phase
We divide the testing phase into two parts: testing on stored
image sequences, and testing using a live demo. For both

parts, we use the following distance metric to compute the
similarity between two shape context descriptors, each rep-
resenting a silhouette:

D(i, T ) =
540∑
k=1

(hi(k)− hT (k))2

hi(k) + hT (k)

where i corresponds to the ith image from the training
database, T corresponds to the test image, and h(k) gives
the normalized histogram value for the kth bin.

3.2.1 Testing on Stored Images

We collected images of Lionel and Kanako, which then
served as the test images for the training images of Vikram.
A shape context descriptor was computed for each of these
images, and compared with the descriptors corresponding
to all the training images to obtain the best matching sil-
houette. We first tested for cases where there was no oc-
clusion. The algorithm performed reasonably well in the
cases where the silhouette can express the overall shape of
the pose. The physiques of Lionel and Kanako are signifi-
cantly different from that of Vikram, and the algorithm still
manages to find the best match for both of them. Figure 4
shows the best match for the images of Lionel and Kanako.

We further tested the algorithm by artificially occlud-
ing the images of Lionel and Kanako and finding the best
matching image from the database. The occlusion for the
test cases was random and did not belong specifically to
one of the five categories described in section 3.1.2. Figure
5 shows the best matching image from the database for each
of two test cases.
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Figure 4: The best match for images of Lionel (top) and
Kanako (bottom) from the database of images of Vikram.

Figure 5: Best matching silhouettes under random occlusion.

3.2.2 Testing Using a Live Demo

We decided to convert all the code written in Matlab to C++
in order to increase the processing speed for the live demo.
We used a popular open source computer vision library,
OpenCV, to perform all the image processing. For the live
demo, we estimated the locations of the different body parts
mentioned in section 3.1.3. We first obtained the shape con-
text feature vectors for the silhouettes, and then obtained all
feature vectors from our training database whose distance
from the test feature vector was below a certain threshold.
Since the number of such vectors is usually small, and each
vector is extremely high-dimensional (540 dimensions), we
cannot use linear regression to estimate the positions of the
different body parts as the matrix X ′X will often be singu-
lar where X is the matrix containing the training examples’
body part positions in its rows. Hence, we obtained the po-
sitions of the body parts using a weighted mean of the posi-
tions of the body parts in the set of close training examples.
The formula for the position is:

Pest =

N∑
i=1

(λ−D(i, T ))Pi

N∑
i=1

(λ−D(i, T ))

where Pest is the estimated position in the test image T ,
N is the number of close training examples, λ is the up-
per threshold of the distance between two shape context de-
scriptors, D(i, T ) is the distance between the shape context

Figure 6: Positions of body parts for different poses along with
the closest silhouette from the training database.

(a)

(b)

Figure 7: Positions of body parts for different poses along with
the closest silhouette from the training database for (a) occlu-
sion by a tripod and (b) occlusion by a chair.

descriptor of the ith close example and that of test image T ,
and Pi is the position of the body part in image i.

Figure 6 shows the positions of the different body parts
marked by green dots for an unoccluded test subject.

We further tested the system by placing a tripod and a
chair in front of the test subject in order to create natural
occlusion. Figure 7 shows the estimates of the positions of
body parts for a few cases.

The hands move most rapidly compared to all the other
body parts. Hence, we plot the results for our estimate of
the hand positions for all the three cases described above.
The graphs are shown in Figure 8.

4 Discussions and Future Work
Our pose estimation system runs in real-time and works
well for poses which have close neighbors in the training
database. As we see in figures 6 and 7, for each test im-
age, the closest silhouette in the training database closely
matches the image, and the green dots correctly mark the
positions of the body parts. Occlusion of a significant part
of the body does not compromise the accuracy of pose es-
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(a)

(b)

(c)

Figure 8: The graphs on the left column show the plot of the
estimated position of the left hand against the actual postion,
and the graphs on the right column show the plot of the esti-
mated position of the right hand against the actual position,
for a) an unoccluded test subject, b) a test subject occluded by
a tripod, and c) a test subject occluded by a chair.

timation. In figure 8, the estimated position of each hand
does not deviate significantly from the actual position.

We note that the performance of the system is con-
strained by the size of the training database, which in our
case contains roughly 1300 images. This is clearly insuf-
ficient for robust pose estimation, as these images cover a
small subset of all possible human poses. To obtain re-
liable results, the database should contain at least 100000
images with parameter values sampled independently and
uniformly within anatomically feasible ranges [7]. In future
work, we can use POSER [10] to render synthetic training
images from a humanoid model.

In such a large database, it is inefficient to search through
all the images to find the best match. We can use parameter-
sensitive hashing [7] to preserve the real-time performance
of the system. Parameter-sensitive hashing uses parameter-
sensitive hash functions, in other words, hash functions that
are sensitive to the similarity in the parameter space, and
retrieves in sublinear time approximate nearest neighbors
of the test image with respect to parameter values as well
as the shape context feature vectors. The sublinear running
time achieved by examining only a fraction of the dataset,
yet not compromising the accuracy of the pose estimation
makes real-time performance possible. We can then use ro-
bust locally-weighted linear regression [11] to find the po-
sitions of the body parts in the image. Even if we come
across a test image which has no exact match in the train-
ing database, we can still obtain an estimate of their co-
ordinates by computing a weighted average of the values
for the k training images most similar to the test image. Fur-
thermore, robust LWR minimizes the influence of outliers.

Due to the loss of depth and limb labeling information
for single silhouettes, the resulting 3D pose can be ambigu-
ous. To make the system robust to such ambiguity, we can
implement a regressive tracking framework described in [8]
as long as our pose estimation system can accommodate a
high frame rate. This framework recovers the most likely
pose at each time step by using a dynamical model of the
human body learned from training data to predict the 3D
pose distribution and a learned regression value. Results in
[8] show that the regressive tracking framework tracks long
sequences stably.
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