
Minimizing System Correlation in SVM TrainingLuciana Ferrer1 Description of the problemWe will consider a binary classi�cation task for which two separate classi�ers are available. Each classi�ermay use di�erent input features and di�erent modeling techniques. In a setup like this, the �nal decisionis made based on a combination of the outputs generated by both classi�ers with the hope that the �nalperformance will be better than the performance of the two individual classi�ers. This, nevertheless, is notnecessarily the case. In the extreme, if both classi�ers were generating exactly the same output for eachsample, the combined classi�er could never have a better performance than the individual ones, independentlyof the combination procedure used. Intuitively, what we wish is to have two classi�ers for which the withinclass correlation is small. This way, both classi�ers contribute independent information leading to a better�nal decision.In this work we will study the case in which one of the classi�ers is given to us (we can consider thissystem as a black box which simply gives us a value for each sample) and the other one is an SVM whichwe need to train. Our goal is to modify the training criteria for the SVM so that the score resulting fromthis system is as little correlated as possible to the scores from the black box system.2 Anti-correlation KernelIn this section we will derive the optimization problem we need to solve in order to achieve the combined goalof minimizing the error of the SVM system (which we will call S) while also minimizing the correlation of thissystem with the original black box system (which we will call B). Given a training set T = f(x(i); y(i)); i =1; :::;mg, the standard SVM problem is:minimizew;b;� J(w; �) = 12wtw + CPi �isubject to y(i)(wtx(i) + b) � 1� �i i = 0; :::;m�i � 0 i = 0; :::;m (1)We want to modify the objective function by adding a term ��2 in the objective function, where � is atunable parameter and � is the within-class correlation between system S and system B. Given the scoresfb(i); i = 1; :::;mg from system B for the training set T , we can compute the within-class correlation betweenthe scores produced by the SVM and these scores the following way:�2 = cov(B; SjY )2var(BjY )var(SjY ) (2)where cov(B; SjY ), var(BjY ) and var(SjY ) are the within-class covariance and variances. These can beapproximated by the within-class sample covariance and variances in the training set T . The within-classsample covariance can be calculated as,cov(B; SjY ) � 1m X�=1;�1Xi I(y(i) = �)(b(i) � �b�)(s(i) � �s�) (3)where �b� and �s� are the sample means for each class � = 1;�1. The value s(i) is the output of the SVM,i.e. , s(i) = wtx(i) + b. Replacing this into (3) we get,cov(B; SjY ) � wtK (4)1



where, K = 1m X�=1;�1Xi I(y(i) = �)(b(i) � �b�)(x(i) � �x) (5)where �x is the vector of feature means. K is simply the vector of within-class covariances between each inputfeature and the scores from system B. Similarly, we can compute var(SjY ) and get wtMw where M is thewithin-class sample covariance matrix of the training set T . Calling v = var(BjY ), we can write �2 as:�2 = wtKKtwv wtMw (6)The new objective function then is J(w; �) = 12wtw+ 12�wtKKtwv wtMw +CPi �i. This function is not convex.On the other hand, if instead of trying to minimize the within-class correlation we try to minimize the within-class covariance, we get J(w; �) = 12wt(I + �KKt)w + CPi �i = 12wtAw + CPi �i, where A = I + �KKtis a symmetric positive semide�nite matrix. Now, by doing a change of variable ~w = Bw, with A = BtB(i.e. , B is a matrix square root of A), we can write the new optimization problem as:minimize~w;b;� J( ~w; �) = 12 ~wt ~w + CPi �isubject to y(i)( ~wtz(i) + b) � 1� �i i = 0; :::;m�i � 0 i = 0; :::;m (7)where z(i) = (B�1)tx(i). This is simply another SVM problem with kernel K(x; y) = xtA�1y. Thematrix A�1 can be computed extremely e�ciently using the matrix inversion lemma by which A�1 =I � �1+�KtKKKt, thus, K(x; y) = xty � �1 + �KtKxtKytK (8)We can give an intuitive interpretation to this kernel. When � is small this kernel is close to the linearkernel. When � grows to in�nity the kernel substract the projection of the points x and y into the vector Kfrom the linear kernel. The resulting value of the kernel will be small if x and y are both aligned with K.Since the SVM will only make an e�ort to separate points which give a high kernel value, this means we areconsidering vectors which direction is close to that of K to be unimportant and, in consequence, emphasizingthe importance of the vectors which direction is di�erent from that of K.3 SimulationIn order to test this idea we created a toy problem. We generated data for two classes with model x =Cy + m�, where the yi are generated independently with a normal distribution with zero mean and unitvariance, C is a random matrix intended to create correlation between the features and m� is a vector ofzeros for one class and a vector of ones for the other class. We then took half of the features and trained anSVM, which served as system B. The remaining features were used to train system S with varying valuesof �. We created two separate sets, one for training and one for testing.Figure 1 shows the scatter plot of scores (on the training data) for both systems with � = 0 and � = 107.We can see that for the large value of �, the within class correlations have been reduced (eventhough weare actually minimizing the covariance and not the correlation). We can also see from this picture that theseparation of the two classes is better for the larger � which implies that the performance of the combinationshould be better in this case. Figure 2 con�rms this observation. In this �gure we see the error rates forsystem S, system B and the combined system and the correlation between system S and system B as afunction of the value of � for the test data. The error for system B (blue line) does not depend on �.The error for system S (red line) grows with the value of � since we are tradding o� poorer performance in2



−10 −5 0 5

−10

−8

−6

−4

−2

0

2

4

6

8

10

B scores

S 
sc

or
es

 fo
r l

am
bd

a 
= 

0
−10 −5 0 5

−8

−6

−4

−2

0

2

4

6

8

B scores

S 
sc

or
es

 fo
r l

am
bd

a 
= 

10
00

00
00

Figure 1: Scores from system B versus scores from system S for two values of �exchange for lower correlation with systemB. The black line shows that, in fact, we achieve lower correlations(reaching a value of zero) for higher values of �. Finally, the green line shows the performance measure wecare about, the performance of the combined system. The combination is performed using another SVMwhich is trained on the training set with the scores from the two SVM systems, B and S, for each value of �.The combination performance improves for higher values of �, from 2.02% to 1.32%. This is a 35% relativeimprovement. Similar results were found by changing the random seed, the number of features, the numberof training and test samples, etc.4 Application to Speaker Veri�cationSpeaker veri�cation is the task of deciding whether a speech sample was produced by a certain targetspeaker or not. It is a binary classi�cation task where the two classes are true-speaker and impostor. Weare considering a speaker veri�cation system composed by two subsystems briey described below: theUBM-GMM and the MLLR-SVM. The goal is to use the method explained above to train the MLLR-SVMsubsystem taking into account the fact that the �nal system will be a combination of both these systems.4.1 Universal Background Model GMM (UBM-GMM) systemThe UBM-GMM system is a generative classi�er. The input features are given by the Mel Frequency CepstralCoe�cients (MFCC), which serve as a description of the vocal tract characteristics of the speaker. Eachclass (impostor and true-speaker) is modeled using a Gaussian mixture model (GMM). The impostor GMM,usually called background GMM, is trained using data from a large set of held-out speakers. The true-speaker models for each speaker (called target models) are trained by adapting the background GMM to thespeaker's training data. The score is �nally computed as the logarithm of the ratio between the likelihoodsof both models given the test data [1].4.2 Maximum Likelihood Linear Regression SVM (MLLR-SVM) systemState-of-the-art speech recognition systems use methods to adapt the models for the acoustic units to thespeaker of the utterance being recognized. One strategy for performing this adaptation is to compute alinear transformation of the means of the Gaussians of the acoustic models such that the transformed modelsmaximize the likelihood of the utterance. The parameters of this MLLR transform encode a description ofthe speaker speci�c characteristics of the acoustic models, i.e., they describe how the speaker di�ers fromthe average population of speakers used to train the original acoustic models. Thus, these parameters canbe used to train the SVM target models for speaker veri�cation systems [2, 3]. The MLLR-SVM system iscurrently one of the best performing speaker veri�cation systems.3
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Figure 2: Error and correlation as a function of �4.3 Application of the proposed method to the speaker veri�cation problemIn speaker veri�cation we need to train one model (SVM) for each target speaker. In this work we willconsider the case in which around 2.5 minutes of a telephone conversation are available for training andanother 2.5 minutes are available for testing. The MLLR-SVM system converts each sample into one longvector of dimension 6240 containing the parameters of the MLLR transforms for each class of acoustic models.This implies that when training a target SVM we have only one vector labeled true-speaker. On the otherhand, we can use all the held-out conversation used for training the UBM model in the UBM-GMM systemas samples for the impostor class1.To implement the proposed method to train a target model we need to estimate the vector K of within-class covariances between the UBM-GMM system and each of the MLLR features. Since only one sample isavailable for the true-speaker class, we will estimate vector K as the covariances for the impostor class only(i.e., in Equation 3 the �rst sum is done only over � = �1). To estimate this covariance we need to havethe output of the UBM-GMM system corresponding to the speaker for some signi�cant amount of impostorsamples. For this, we select a set of 184 held-out utterances from di�erent speakers (which are never targetspeakers) and obtain scores from the UBM-GMM system (using the adapted model corresponding to thetarget speaker). These samples are used to obtain an estimation of the vector K according to Equation 3.This procedure has to be done separately for each target speaker. This implies that a di�erent kernel is usedto train (and test) each target SVM.4.4 ResultsWe applied this method to the data from the 2005 speaker recognition evaluation organized by NIST. Thecorrelation vectors are estimated using speakers from the 2004 evaluation. The resulting MLLR-SVM systemsfor di�erent values of � are combined with the UBM-GMM sytem using a linear perceptron. Figure 4.4 showsthe curve of false rejection versus false acceptances for �ve di�erent systems2: The UBM-GMM system, twoMLLR-SVM systems, one for � = 0 and one for � = 10 (results do not change for larger values of �) and thetwo corresponding combined systems. We can see that a signi�cant improvement (of around 5% on mostoperating points) on the combined system is achieved by using the proposed kernel.Curves similar to the ones presented in Section 3 could be shown here. We do not show them due tolack of space, but we want to point out that eventhough the correlation between both systems goes downwhen � increases, the value never reaches 0. For � = 0 the average correlation for all speakers is 0.57. Forlarge values of � the correlation decreases to 0.43. On the other hand, the inner product between the vector1In order to compensate for this very unbalanced number of samples for the classes we use a weight of 500 for the slackvariable corresponding to the positive sample and a weight of 1 for the slack variables corresponding to the negative samples inthe objective function of the SVM2Here we use the complete curve that is obtained by sweeping a threshold on the scores to show that improvements areobtained at any value of the threshold. Speaker recognition systems are usually used on the left upper corner of this plot, wherefalse acceptances are very low. 4
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Figure 3: False rejection versus false acceptances for the UBM-GMM, two MLLR-SVM systems and thecorresponding combinationsK and the resulting weight vector w does reach 0, which is what we expect this kernel to achieve. Thisindicates that the SVM is �nding the right weight vectors for the estimated K vectors, but that these vectorsthat are estimated from the held-out data are not predicting the correlations between the features and theUBM-GMM system accurately. This might indicate that we should use more impostor samples to estimateK, that we need better matched data (2004 and 2005 databases where somewhat di�erent data collections)or that we need to include true-speaker samples in the estimation of K. In any case, this is an issue thatneeds further investigation.There are two ways in which the results presented in this section are somewhat optimistic. First, theoptimal value of lambda was chosen to optimize the test performance; and second, the combiner was trainedon the test data. We believe that both are relatively minor problems. In the case of the choice of lambda,we saw in the simulations that the performance of the combination converges to a certain value as lambdagrows. This same e�ect is seen in the speaker veri�cation performance. Thus, the exact choice of lambda isnot important, as long as the value is large enough. The problem of the combiner being trained on the testdata is somewhat more important, but since the combiner is simply a perceptron with only three parametersand the number of training samples is large (26270 samples, 10% of which are true-speaker samples) thepossibility of over�tting the parameters to the test data is very small. For these reasons, we believe thatwhen we test the system on new unseen data we will obtain results similar to the ones presented above.4.5 ConclusionsThe presented method shows to be e�ective in �nding SVMs that lead to improved performance for theoverall combined system with respect to the performance obtained by training the SVMs to optimize theperformance of the subsystem by itself.References[1] Douglas A. Reynolds, Thomas F. Quatieri, and Robert B. Dunn, \Speaker veri�cation using adapted Gaussianmixture models," Digital Signal Processing, vol. 10, pp. 19{41, 2000.[2] A. Stolcke, L. Ferrer, S. Kajarekar, E. Shriberg, and A. Venkataraman, \MLLR transforms as features in speakerrecognition," in Proceedings of the 9th European Conference on Speech Communication and Technology, Lisbon,Sept. 2005, pp. 2425{2428.[3] A. Stolcke, L. Ferrer, and S. Kajarekar, \Improvements in MLLR-transform-based speaker recognition," in Proc.IEEE Odyssey 2006 Speaker and Language Recognition Workshop, San Juan, Puerto Rico, June 2006.5


