
Object Recognition and Classification from 3D Point Clouds
Antoine El Daher Sehyuk Park

Abstract: in most modern robotic applications, having
accurate object recognition and classification is
becoming an ubiquitous requirement. To deal with the
latter, several techniques have been proposed, using
either monocular computer vision, stereo vision, and
even laser arrays. Recently, new laser devices
introduced into the market, are able to capture the
whole environment as a sequence of several hundreds
of thousands of points per second, sampled from the
environment, along a cylinder around the laser device.
Essentially, with correct pose estimation, those point
clouds give us exactly 3D point coordinates for a very
fine-grain sampling of the scene around us. In this
paper, we present two techniques for recognizing
objects based on those point clouds. The first one is
based on using support vector machines, and extracting
features from the scene; the second is based on boosting
a set of weak decision tree classifiers to recognize the
object. We also present a framework for performing
accurate simulations of the laser output.

I. Introduction and Previous Work:

Several techniques have been used to recognize objects
using computer vision. Currently, Viola-Jones advertise
the most successful ones, which are based on making a
boosted cascade of simple Haar-like feature classifiers
[1],[2]. There are successful attempts at recognizing
objects from images using SVM, as described in [3],[4]
and [5], using typical Mercer or non-Mercer kernels.
All those methods have proven to be highly accurate for
simple 2D images, and under certain conditions. But the
accuracy given by computer vision is not remotely
sufficient for actual robotics. For example, a car
detection module that used boosted classifiers, would
always return several false positives, and several false
negatives. And even if an object was detected using the
camera, then it would be even more difficult to exactly
pinpoint the object to 3D space, and find its bounds
correctly. Many factors contribute to this inaccuracy;
suffice to say that lighting conditions, colors, radial
distortion, all affect the quality of the reading, and
hence of the recognition. The idea behind lasers is that
they are extremely accurate, and rarely off by more than
1mm. They emit their own light, so do not suffer from
lighting fluctuations. We expect points coming out of a
laser detection to be precise. Also, they are correctly
scaled, which is different for the camera, since a same
object can appear in different sizes for the latter,
depending on its distance. There has been some work

on recognition from range images [6],[7]. [8] describes
a more recent approach, which uses the laser data in
conjunction with camera data to “normalize” the
camera data, in order to account for lighting changes. In
this paper, we will describe our implemented simulator,
as well as some of the techniques that we experimented
with. For the simple case of testing whether an input
object is a bottle or something else, we were able to get
a classifier accuracy of 95.83% using 600 examples.

II. Simulating Readings:

Because such lasers are mostly at the prototype level,
and still prohibitively expensive, we decided to design a
simulator that would behave like the laser would. So we
would feed in a scene of the environment, and then the
simulator would give readings, as it would see them
from its own point of view, if it were a set of 64
spinning lasers, along the y-axis.

The code for this was done mostly using OpenGL. We
implemented a tool that would render scenes. We also
implemented a laser simulator, which would spin
around, and sample the scene at discrete intervals, and
mark those points. We then ran the simulator on several
3D models of bottles, and recorded the outputs given by
that simulator.

Because we only had around 10 models of bottles at our
disposal, we recorded those same models in several
other poses, sometimes applying some distortion in 3D
space to them, in order to get more general results. We
ended up with a few hundred 3D models of bottles,
measured by 3D point clouds.

Figure 1: The simulator running on certain bottles.

The results given by the simulator were very
satisfactory. The interface has also been made such that
one can navigate through the scene, look around, and
one can easily distort the points read out by the
simulator, store them in file, and test classification on
them based on the reading.

III. SVM for recognition

We have done a lot of work at the implementation level
on SVM object recognition. Using SVMs, we tried to
solve multi-class classification problem. 3D features
(x,y,z) are not well-known to the image classification
problems but there are many well-known methods for
2D images.

First of all, there are several ways of gathering features
from 3D images. We devised a simple way of gathering
features that is applicable to general learning algorithms
easily.

As preprocessing, we shift the 3D points so that the
mean of z value becomes 0. Simply, we can subtract
mean z value from every point’s z value. Using this
way, we can also rescale every object to have similar
sizes, basically by dividing every coordinate by the
maximal coordinate that has been read throughout the
reading.

Based directly on the range scan, we divided the 3D
image into N by M regions and for each region,
computed the maximum, minimum and mean z value
among the points in the region. For example, taking
into account a 3D bottle similar to the one before:

Similarly, we could compute minimum and average z
value for each region. The three measures (max, min
and mean) are a very good way to explain the features
briefly.

Then, we have N*M*3 dimensional features. Using the
features of the training examples, we can train an SVM
model and predict on test examples. This is a first very
simple approach at the problem.

We experimented with various kinds of kernels, but
found that the most accurate results came when we used
the radial basis kernel:

The following picture shows the information that we’d
extract out of such an image.

Figure 2: the max,min and mean features

And here is a an example that shows exactly what is
currently going on with the inputs.

Figure 3: Sample bottle

And assuming that the camera reader is somewhere on
the XZ plane, away from the YX plane, we get the
following readings:

Figure 4: Depth map for the bottle

In this image, each reading is a depth reading, as given
by the laser scanner.

In order to solve the scaling problem, we devise a
hierarchical model, similarly to what is described in [9].
In other words, we gather features from M x N regions,
(M/2) x (N/2), (M/4) x (N/4) and so on. In other words,
we divide the image into several sub-samples, and get
features from that.

The question one needs to ask oneself at this point is:
how big should M and N be? Bigger regions can solve
the locally translation invariant problem but will lose
much information. On the other hand, small regions can
contain more information and capture more important
features. The latter might nevertheless be affected by
small translations in the input.

Note that all of the above mostly refers to depth images,
as opposed to actual (x,y,z) coordinate images. We will
be working on extending the algorithm to take all of
this into account; the scaling problem would disappear
under those conditions, since we know that a bottle can
only be of a specific size.

Thanks to Chih-Chung Chang and Chih-Jen Lin, we
used some parts of the code LIBSVM (A Library for
Support Vector Machines).

The experimentation procedure is described in the
section about results.

IV. Boosted classifiers for recognition:

i. Technique:

In the spirit of what was done by Viola-Jones [2], and
Nuchter [8], we thought about using boosted weak
learners to classify 3D objects. We did not really do any
implementation on this part, but gathered most of the
ideas already.

For purely depth images, the idea is to use the same set
of features as those found in 2D images classification,
namely simple Haar wavelets; then one can run
AdaBoost to combine those in order to correctly be able
to classify the input. Note that the input would then
simply be the depth reading.

However, this would basically be forcing the object to
be recognized from this particular point of view, but we
have much more information from the 3D points and
the pose of the laser, than we have from depth
information.

For this reason, it seems natural to extend the Haar
wavelets typically used in 2D computer vision, to take
depth into account; the basis is too big to fully list, here
are a couple of vectors in the basis:

Figure 5: 3D Haar wavelets.

So given a particular input, whenever a point that is
read falls within the “black” area, it is added to the sum,
and whenever it falls within the “white” area it is
subtracted, similarly to what the Haar features do.

The idea is that we have several such features, and so in
the test cases, we find the feature which maximizes the
information gain. Then we re-assign weights for the
whole sample space using the standard AdaBoost
technique, and find the next feature which maximizes

information gain, and so on. In the end, we combine all
of them to create a classifier.

Next, given a test image, all we need to do is evaluate
that classifier for those images.
ii. Reducing the run-time:

To speed things up during training, as was done using
the standard 2D Haar, we can use an “integral 3D
image”, which stores for any [x,y,z], the total number
S[x,y,z] of points contained in the box [0..x] x [0..y] x
[0..z], so that the number of points contained in [a..b] x
[c..d] x [e..f] can be calculated using O(1) accesses to
the [x,y,z] table.

Computing the [x,y,z] table can be made efficiently.
We used the following formula:

S[x,y,z] = S[x-1,y,z] + S[x,y-1,z] + S[x,y,z-1]

- S[x-1,y-1,z] – S[x,y-1,z-1] – S[x-1,y,z-1]
 + S[x-1,y-1,z-1] + P[x,y,z]

Where P[x,y,z] = 1 if there is a point inside the bin
[x,y,z] and 0 otherwise. This clearly allows us to find
the whole of S[x,y,z] in O(n3) time.

Figure 6: Finding S[x,y] in O(1)

Looking at the above table, which is a 2D simplification
of the problem, we notice that the sum of the points in
the range [a; x] x [b; y] is simply:

S[x,y] – S[a,y] – S[x,b] + S[a,b]

Extending this to the case of a 3D feature, it is easy to
see that the sum of pixels in the range [a..x] x [b..y] x
[c..z] is:

S[x,y,z] – S[a,y,z] – S[x,b,z] – S[x,y,c]
+ S[a,b,z] + S[a,y,c] + S[x,b,c] – S[a,b,c]

With that in mind, we can evaluate each feature at a
specific location, and get a certain value for it.

iii. Training:

Training occurs as follows: for each possible feature,
try placing the feature at every single location in the
image grid. Evaluate the feature for all of the positive

samples, and all of the negative samples. Use the
feature as a classifier, and find the threshold which
maximizes the information gain. Then find the feature
which maximizes the information gain, which is simply
given as:

In the above, n0 is the number of negative examples that
would make the value bigger than the threshold, p1 is
the number of positive examples whose feature
evaluation would yield a value smaller than the
threshold.

So in the end, the problem is simply one that counts
take into account the density of points, and their
configuration, to be able to make accurate predictions.
The training time for this method was understandably
very slow, because we’re forced to go over several
combinations. For 4 kinds of features, and different
kinds of scaling in (x,y,z) there are approximately O(n6)
combinations, each of which needs to be tested on the
samples which number possibly as much as a thousand.
In addition, storage for the sum tables tend to be also
very large, occupying a cubic amount of memory for
each of the test samples.

This made it difficult to train on a very large set, and so
we had to restrict ourselves to sets with sizes as small
as 20 elements, and test sets of size 20 elements. This
only yielded accuracies of 70-75%. With more
computing power, we could have trained it on much
larger sets and seen what the results would look like,
which is something that we have included in our future
work.

iv. Accounting for various transformations:

Some factors need to be taken into account in order to
make sure that objects are correctly recognized. First of
all, the range readings are all converted to position
readings in x,y,z; this makes sure that objects are
correctly scaled, and that an object nearby won’t look
ten times bigger as it would in a camera.

Second, when an object needs to be classified, the mean
depth is subtracted, so that the object now has a depth
centered at z = 0. This allows for some translation
issues to be resolved.

V. Results

Let us first describe the testing scenario that we used.

Because the results of the SVM algorithm were the
most successful, we will report them here. The previous
section describes the results of the boosting method.
We generated 300 models of bottles, and 300 models of
non-bottles, which included various random objects,
such as cylinders, spheres, distorted planes, random sets
of points; we then ran it with various cross validation
coefficients, for example, with 70% of the samples used
for training, and 30% of the data used for testing.

The initial accuracy using 60%-40% validation was
95.83%, with 230 out of 240 examples being classified
correctly. The number of support vectors on the 360
strong training set was 205 on average.

For various other distributions of the cross validation
percentages, the accuracy varied between 93% and 96%.

To make more evident the effect of the sample training
size, we ran it on several different sample sizes, which
we increased progressively.

Here are the results for 70-30 cross validation:

Training Size SV Test Accuracy
12 7 75%
24 13 75%
36 24 81.81%
48 31 80%
60 35 87.5%

120 61 91.67%
240 90 91.67%
360 139 93.33%
480 201 93.06%

Table 1: SVM testing results

The number SV represents the number of support
vectors that were used in the final classified. Here is the
corresponding learning curve.

Figure 7: SVM learning curve

VI. Conclusions and Future Work:

The results given by SVM were quite accurate (up to
95%), and we are convinced that given more time and
computing power, the results given by boosting weak
classifiers would also have been far more accurate.

There were some problems with the training that we’d
like to address in the future. The first one was
obviously that the bottle samples are quite different
from the non bottle samples, which made the problem
“easy” to classify, even though we tried having some
similar shapes, such as cylinders in the non-bottles.

However, because everything was run of the simulator
we did not have an infinite amount of data, and the
inputted negative samples would probably not work if
run on an actual data. An actual device would have
given far more representative results. Either way, the
methods are solid and fast at runtime at this theoretical
level.

References:
[1] Paul Viola, Michael Jones, "Rapid Object Detection
Using a Boosted Cascade of Simple Features" (2004)
[2] Viola, Jones, "Robust Real-time Object Detection"
[3] C. Bahlmann, B. Haasdonk, and H. Burkhardt. On-
line handwriting recognition with support vector
machines—a kernel approach. In Proc. of the 8th
IWFHR, pages 49–54, 2002.
[4] Sabri Boughorbel; Jean-Philippe Tarel
“Non-Mercer Kernels for SVM Object Recognition”
[5] Chikahito Nakajima Norihiko Itoh
“Object Recognition and Detection by a Combination
of Support Vector Machine and Rotation Invariant
Phase Only Correlation”
[6] Farshid Arman, “Model-Based Object Recognition
in Dense-Range Images — A Review”
[7] Paul J. Besl and Ramesh C. Jain, “Three-
Dimensional Object Recognition”
[8] Andreas Nuchter, Hartmut Surmann, Joachim
Hertzberg “Automatic Classification of Objects in 3D
Laser Range Scans”
 [9] J. Mutch and D. Lowe. “Multiclass Object
Recognition with Sparse, Localized Features” In: Proc.
IEEE Conf. Comp. Vision Patt. Recog. 2006
[10] H. Zhang, A. C. Berg, M. Maire, and J. Malik,
“SVM-KNN: Discriminative nearest neighbor
classification for visual category recognition,” in Proc.
CVPR, 2006.
[11] Kristen Grauman, Trevor Darrell, Unsupervised
Learning of Categories from Sets of Partially Matching
Image Features, Proceedings IEEE Conf. on Computer
Vision and Pattern Recognition, 2006.

