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Abstract: in most modern robotic applications, having 
accurate object recognition and classification is 
becoming an ubiquitous requirement. To deal with the 
latter, several techniques have been proposed, using 
either monocular computer vision, stereo vision, and 
even laser arrays. Recently, new laser devices 
introduced into the market, are able to capture the 
whole environment as a sequence of several hundreds 
of thousands of points per second, sampled from the 
environment, along a cylinder around the laser device. 
Essentially, with correct pose estimation, those point 
clouds give us exactly 3D point coordinates for a very 
fine-grain sampling of the scene around us. In this 
paper, we present two techniques for recognizing 
objects based on those point clouds.  The first one is 
based on using support vector machines, and extracting 
features from the scene; the second is based on boosting 
a set of weak decision tree classifiers to recognize the 
object. We also present a framework for performing 
accurate simulations of the laser output. 
 
 
I. Introduction and Previous Work: 
 
Several techniques have been used to recognize objects 
using computer vision. Currently, Viola-Jones advertise 
the most successful ones, which are based on making a 
boosted cascade of simple Haar-like feature classifiers 
[1],[2].  There are successful attempts at recognizing 
objects from images using SVM, as described in [3],[4] 
and [5], using typical Mercer or non-Mercer kernels. 
All those methods have proven to be highly accurate for 
simple 2D images, and under certain conditions. But the 
accuracy given by computer vision is not remotely 
sufficient for actual robotics. For example, a car 
detection module that used boosted classifiers, would 
always return several false positives, and several false 
negatives. And even if an object was detected using the 
camera, then it would be even more difficult to exactly 
pinpoint the object to 3D space, and find its bounds 
correctly. Many factors contribute to this inaccuracy; 
suffice to say that lighting conditions, colors, radial 
distortion, all affect the quality of the reading, and 
hence of the recognition. The idea behind lasers is that 
they are extremely accurate, and rarely off by more than 
1mm. They emit their own light, so do not suffer from 
lighting fluctuations. We expect points coming out of a 
laser detection to be precise. Also, they are correctly 
scaled, which is different for the camera, since a same 
object can appear in different sizes for the latter, 
depending on its distance. There has been some work 

on recognition from range images [6],[7]. [8] describes 
a more recent approach, which uses the laser data in 
conjunction with camera data to “normalize” the 
camera data, in order to account for lighting changes. In 
this paper, we will describe our implemented simulator, 
as well as some of the techniques that we experimented 
with. For the simple case of testing whether an input 
object is a bottle or something else, we were able to get 
a classifier accuracy of 95.83% using 600 examples. 
 
II. Simulating Readings: 
 
Because such lasers are mostly at the prototype level, 
and still prohibitively expensive, we decided to design a 
simulator that would behave like the laser would. So we 
would feed in a scene of the environment, and then the 
simulator would give readings, as it would see them 
from its own point of view, if it were a set of 64 
spinning lasers, along the y-axis.  
 
The code for this was done mostly using OpenGL. We 
implemented a tool that would render scenes. We also 
implemented a laser simulator, which would spin 
around, and sample the scene at discrete intervals, and 
mark those points. We then ran the simulator on several 
3D models of bottles, and recorded the outputs given by 
that simulator. 
 
Because we only had around 10 models of bottles at our 
disposal, we recorded those same models in several 
other poses, sometimes applying some distortion in 3D 
space to them, in order to get more general results. We 
ended up with a few hundred 3D models of bottles, 
measured by 3D point clouds.  
 

 



 
Figure 1: The simulator running on certain bottles. 

 
The results given by the simulator were very 
satisfactory. The interface has also been made such that 
one can navigate through the scene, look around, and 
one can easily distort the points read out by the 
simulator, store them in file, and test classification on 
them based on the reading. 
 
III. SVM for recognition 
 
We have done a lot of work at the implementation level 
on SVM object recognition. Using SVMs, we tried to 
solve multi-class classification problem. 3D features 
(x,y,z) are not well-known to the image classification 
problems but there are many well-known methods for 
2D images.  
 
First of all, there are several ways of gathering features 
from 3D images. We devised a simple way of gathering 
features that is applicable to general learning algorithms 
easily. 
 
As preprocessing, we shift the 3D points so that the 
mean of z value becomes 0. Simply, we can subtract 
mean z value from every point’s z value. Using this 
way, we can also rescale every object to have similar 
sizes, basically by dividing every coordinate by the 
maximal coordinate that has been read throughout the 
reading. 
 
Based directly on the range scan, we divided the 3D 
image into N by M regions and for each region, 
computed the maximum, minimum and mean z value 
among the points in the region. For example, taking 
into account a 3D bottle similar to the one before: 
 
Similarly, we could compute minimum and average z 
value for each region. The three measures (max, min 
and mean) are a very good way to explain the features 
briefly.  
 
Then, we have N*M*3 dimensional features. Using the 
features of the training examples, we can train an SVM 
model and predict on test examples. This is a first very 
simple approach at the problem.   
 

We experimented with various kinds of kernels, but 
found that the most accurate results came when we used 
the radial basis kernel: 

 
 
The following picture shows the information that we’d 
extract out of such an image. 

 
Figure 2: the max,min and mean features 

 
And here is a an example that shows exactly what is 
currently going on with the inputs. 
 

 
Figure 3: Sample bottle 

 



And assuming that the camera reader is somewhere on 
the XZ plane, away from the YX plane, we get the 
following readings: 
 
 

 
Figure 4: Depth map for the bottle 

 
In this image, each reading is a depth reading, as given 
by the laser scanner. 
 
 
In order to solve the scaling problem, we devise a 
hierarchical model, similarly to what is described in [9]. 
In other words, we gather features from M x N regions, 
(M/2) x (N/2), (M/4) x (N/4) and so on. In other words, 
we divide the image into several sub-samples, and get 
features from that. 
 
The question one needs to ask oneself at this point is: 
how big should M and N be? Bigger regions can solve 
the locally translation invariant problem but will lose 
much information. On the other hand, small regions can 
contain more information and capture more important 
features. The latter might nevertheless be affected by 
small translations in the input.  
 
Note that all of the above mostly refers to depth images, 
as opposed to actual (x,y,z) coordinate images. We will 
be working on extending the algorithm to take all of 
this into account; the scaling problem would disappear 
under those conditions, since we know that a bottle can 
only be of a specific size. 
 

Thanks to Chih-Chung Chang and Chih-Jen Lin, we 
used some parts of the code LIBSVM (A Library for 
Support Vector Machines).  
 
The experimentation procedure is described in the 
section about results. 
 
 
IV. Boosted classifiers for recognition: 
 
i. Technique: 
 
In the spirit of what was done by Viola-Jones [2], and 
Nuchter [8], we thought about using boosted weak 
learners to classify 3D objects. We did not really do any 
implementation on this part, but gathered most of the 
ideas already. 
 
For purely depth images, the idea is to use the same set 
of features as those found in 2D images classification, 
namely simple Haar wavelets; then one can run 
AdaBoost to combine those in order to correctly be able 
to classify the input. Note that the input would then 
simply be the depth reading. 
 
However, this would basically be forcing the object to 
be recognized from this particular point of view, but we 
have much more information from the 3D points and 
the pose of the laser, than we have from depth 
information. 
 
For this reason, it seems natural to extend the Haar 
wavelets typically used in 2D computer vision, to take 
depth into account; the basis is too big to fully list, here 
are a couple of vectors in the basis: 
 

 
Figure 5: 3D Haar wavelets. 

 
So given a particular input, whenever a point that is 
read falls within the “black” area, it is added to the sum, 
and whenever it falls within the “white” area it is 
subtracted, similarly to what the Haar features do. 
 
The idea is that we have several such features, and so in 
the test cases, we find the feature which maximizes the 
information gain. Then we re-assign weights for the 
whole sample space using the standard AdaBoost  
technique, and find the next feature which maximizes 



information gain, and so on. In the end, we combine all 
of them to create a classifier. 
 
Next, given a test image, all we need to do is evaluate 
that classifier for those images. 
ii. Reducing the run-time:  
 
To speed things up during training, as was done using 
the standard 2D Haar, we can use an “integral 3D 
image”, which stores for any [x,y,z], the total number 
S[x,y,z] of points contained in the box [0..x] x [0..y] x 
[0..z], so that the number of points contained in [a..b] x 
[c..d] x [e..f] can be calculated using O(1) accesses to 
the [x,y,z] table.  
 
Computing the [x,y,z] table can be made efficiently. 
We used the following formula: 
 
S[x,y,z] = S[x-1,y,z] + S[x,y-1,z] + S[x,y,z-1] 

- S[x-1,y-1,z] – S[x,y-1,z-1] – S[x-1,y,z-1] 
 + S[x-1,y-1,z-1] + P[x,y,z] 
 
Where P[x,y,z] = 1 if there is a point inside the bin 
[x,y,z] and 0 otherwise. This clearly allows us to find 
the whole of S[x,y,z] in O(n3) time. 
 

 
Figure 6: Finding S[x,y] in O(1) 

 
Looking at the above table, which is a 2D simplification 
of the problem, we notice that the sum of the points in 
the range [a; x] x [b; y] is simply: 

S[x,y] – S[a,y] – S[x,b] + S[a,b] 
 
Extending this to the case of a 3D feature, it is easy to 
see that the sum of pixels in the range [a..x] x [b..y] x 
[c..z] is: 

S[x,y,z] – S[a,y,z] – S[x,b,z] – S[x,y,c] 
+ S[a,b,z] + S[a,y,c] + S[x,b,c] – S[a,b,c] 

 
With that in mind, we can evaluate each feature at a 
specific location, and get a certain value for it. 
 
iii. Training: 
 
Training occurs as follows: for each possible feature, 
try placing the feature at every single location in the 
image grid. Evaluate the feature for all of the positive 

samples, and all of the negative samples. Use the 
feature as a classifier, and find the threshold which 
maximizes the information gain. Then find the feature 
which maximizes the information gain, which is simply 
given as: 
 

 
 
In the above, n0 is the number of negative examples that 
would make the value bigger than the threshold, p1 is 
the number of positive examples whose feature 
evaluation would yield a value smaller than the 
threshold. 
 
 
So in the end, the problem is simply one that counts 
take into account the density of points, and their 
configuration, to be able to make accurate predictions. 
The training time for this method was understandably 
very slow, because we’re forced to go over several 
combinations. For 4 kinds of features, and different 
kinds of scaling in (x,y,z) there are approximately O(n6) 
combinations, each of which needs to be tested on the 
samples which number possibly as much as a thousand. 
In addition, storage for the sum tables tend to be also 
very large, occupying a cubic amount of memory for 
each of the test samples. 
 
This made it difficult to train on a very large set, and so 
we had to restrict ourselves to sets with sizes as small 
as 20 elements, and test sets of size 20 elements. This 
only yielded accuracies of 70-75%. With more 
computing power, we could have trained it on much 
larger sets and seen what the results would look like, 
which is something that we have included in our future 
work. 
 
iv. Accounting for various transformations: 
 
Some factors need to be taken into account in order to 
make sure that objects are correctly recognized. First of 
all, the range readings are all converted to position 
readings in x,y,z; this makes sure that objects are 
correctly scaled, and that an object nearby won’t look 
ten times bigger as it would in a camera. 
 
Second, when an object needs to be classified, the mean 
depth is subtracted, so that the object now has a depth 
centered at z = 0. This allows for some translation 
issues to be resolved. 
 
V. Results 
 
Let us first describe the testing scenario that we used.  



Because the results of the SVM algorithm were the 
most successful, we will report them here. The previous 
section describes the results of the boosting method. 
We generated 300 models of bottles, and 300 models of 
non-bottles, which included various random objects, 
such as cylinders, spheres, distorted planes, random sets 
of points; we then ran it with various cross validation 
coefficients, for example, with 70% of the samples used 
for training, and 30% of the data used for testing. 
 
The initial accuracy using 60%-40% validation was 
95.83%, with 230 out of 240 examples being classified 
correctly. The number of support vectors on the 360 
strong training set was 205 on average. 
 
For various other distributions of the cross validation 
percentages, the accuracy varied between 93% and 96%. 
 
To make more evident the effect of the sample training 
size, we ran it on several different sample sizes, which 
we increased progressively. 
 
Here are the results for 70-30 cross validation: 

Training Size SV Test Accuracy 
12 7 75% 
24 13 75% 
36 24 81.81% 
48 31 80% 
60 35 87.5% 

120 61 91.67% 
240 90 91.67% 
360 139 93.33% 
480 201 93.06% 

Table 1: SVM testing results 
 

The number SV represents the number of support 
vectors that were used in the final classified. Here is the 
corresponding learning curve. 
 

 
Figure 7: SVM learning curve 

VI. Conclusions and Future Work: 
 
The results given by SVM were quite accurate (up to 
95%), and we are convinced that given more time and 
computing power, the results given by boosting weak 
classifiers would also have been far more accurate. 
 
There were some problems with the training that we’d 
like to address in the future. The first one was 
obviously that the bottle samples are quite different 
from the non bottle samples, which made the problem 
“easy” to classify, even though we tried having some 
similar shapes, such as cylinders in the non-bottles.  
 
However, because everything was run of the simulator 
we did not have an infinite amount of data, and the 
inputted negative samples would probably not work if 
run on an actual data. An actual device would have 
given far more representative results. Either way, the 
methods are solid and fast at runtime at this theoretical 
level. 
 
References: 
[1] Paul Viola, Michael Jones, "Rapid Object Detection 
Using a Boosted Cascade of Simple Features" (2004)  
[2] Viola, Jones, "Robust Real-time Object Detection"  
[3] C. Bahlmann, B. Haasdonk, and H. Burkhardt. On-
line handwriting recognition with support vector 
machines—a kernel approach. In Proc. of the 8th 
IWFHR, pages 49–54, 2002. 
[4] Sabri Boughorbel;  Jean-Philippe Tarel  
“Non-Mercer Kernels for SVM Object Recognition” 
[5] Chikahito Nakajima Norihiko Itoh 
“Object Recognition and Detection by a Combination 
of Support Vector Machine and Rotation Invariant 
Phase Only Correlation” 
[6] Farshid Arman, “Model-Based Object Recognition 
in Dense-Range Images — A Review” 
[7] Paul J. Besl and Ramesh C. Jain, “Three-
Dimensional Object Recognition” 
[8] Andreas Nuchter, Hartmut Surmann, Joachim 
Hertzberg “Automatic Classification of Objects in 3D 
Laser Range Scans” 
 [9] J. Mutch and D. Lowe. “Multiclass Object 
Recognition with Sparse, Localized Features” In: Proc. 
IEEE Conf. Comp. Vision Patt. Recog. 2006 
[10] H. Zhang, A. C. Berg, M. Maire, and J. Malik, 
“SVM-KNN: Discriminative nearest neighbor 
classification for visual category recognition,” in Proc. 
CVPR, 2006. 
[11] Kristen Grauman, Trevor Darrell, Unsupervised 
Learning of Categories from Sets of Partially Matching 
Image Features, Proceedings IEEE Conf. on Computer 
Vision and Pattern Recognition, 2006. 


