
Automatic Identification of Red-Eye in Photos

Paul Cuff
Department of Electrical Engineering

Stanford University
Stanford, CA, 94305, USA
E-mail: pcuff@stanford.edu;

Abstract— A simple algorithm is proposed for detecting
the red-eye defect in photographs on a pixel-by-pixel
basis. The algorithm implements a support vector machine
using the degree of redness in the surrounding context
as features. Results are sub-par, chiming in at 9% false
positives and 15% false negatives.

I. INTRODUCTION

From personal experience with photos, I realize
that red-eye removal is still a serious annoyance.
Many software applications require the user to man-
ually identify red-eye in order to remove it. For
this project I use a support vector machine (SVM)
to identify which pixels in a picture have red-eye.
This can serve as the first step to automatically
replacing the red with appropriate colors. After red-
eye is successfully identified in photos, a number of
things can be done to automatically correct it. That
is beyond the scope of this project.

Algorithms do exist which purport to solve this
problem. Due to their often non-free nature, I am
under the impression that they are complicated and
proprietary. One goal of this project is not only to
solve the problem but to do so in a simple manner,
demonstrating the capabilities of the SVM.

A group at the University of Dublin/Trinity Col-
lege [1] attempts to solve this same problem. How-
ever, their algorithm is very hand-tuned and doesn’t
take advantage of the machine learning techniques
that we have studied in this course. Their algo-
rithm also misclassified the eyes in various specific
settings; in my opinion this is because it was so
carefully designed for the typical face in an ideal
environment.

I do the entire identification on a pixel-by-pixel
basis, without first locating the eyes or using any
heuristics. Because the classification considers each
pixel individually, I can train the algorithm quite

well with only a few photographs because each
supplies many training pixels of data.

The features that will be passed into the SVM will
come from the “context” of the pixel in question.
By context I mean a small section of the photograph
centered around the pixel. It seems reasonable that
this could work well since the “context” of a red-
eye pixel should have red in the center surrounded
by some darker color which is surrounded by some
white. Patterns like this should be picked up auto-
matically during the training of the SVM.

Finding an appropriate inner-product for the SVM
in this problem provides some difficulty. The dif-
ference in photographs is not measured well by
the difference in color intensities of the pixels
for several reasons. One is that the photos might
not have the same temporal scale; one might be
larger than the other, having different resolution, but
still be a very similar picture. Another problem is
that two identical pictures with different brightness
will not cancel each other through subtraction. The
approach that I take to resolve these concerns is
discussed in section III.

The exact feature calculation is explained in sec-
tion IV, and the collection of training data and SVM
parameters are explained in section V. Finally, re-
sults are summarized in section VI, and conclusions
are drawn in section VII.

II. DESCRIPTION OF PROBLEM

When a photograph is taken of a face sometimes
the flash causes the eyes to glow red. The pupil
appears red instead of black and is often larger than
normal. We call this effect (and the affected area)
red-eye. The automatic algorithm must correctly
identify all pixels included in the red-eye while not



Fig. 1. Data matrices: Original photograph (left), data matrix I
(center), and data matrix C (right)

incorrectly classifying other regions as red-eye, such
as lips or a red coat.

III. APPROACH

I train a support vector machine to classify a
pixel as red-eye or not based on the context of the
photograph around the pixel. Because each photo-
graph is taken in different lighting and at different
resolution, I do a couple of things to normalize the
contexts so that they can be reasonably compared
with the Gaussian kernel. The degree of redness of
each pixel is weighted more heavily in the feature
set (see section IV) than the overall intensity. Degree
of redness is invariant to intensity, so that helps
normalize the lighting condition. In addition, I use
several different scalings of each context (by down-
sampling) when collecting the training samples (see
section V). This way, if the resolution of two
photographs are not exactly the same they might
at least be comparable for one of the combinations
of scalings.

IV. FEATURES

A photograph can be described using three ma-
trices of equal size, R, G, B, that specify the
brightness of red, green, and blue in each pixel,
respectively. The element in the ith row and the jth
column of R will be designated Rij , and likewise
for the other colors.

I form two data matrices, I and C (illustrated in
figure 1), from which I will take the features for the
algorithm. I and C are the same size as the original
photo, and I (intensity) represents the brightness of
each pixel while C (color) represents the redness.

Iij = Rij + Gij + Bij,

Cij =
Rij

Iij

.

Fig. 2. Manual selection of red-eye: Original photograph (left) and
manually selected red-eye marked in black (right)

The features that I use for the support vector
machine for a given pixel are all the entrees of I
and C in a 41 × 41 square centered around the
pixel in question. However, for the features that
come from I , the set is first normalized to have zero
mean and a standard deviation of 0.03; this way the
overall intensity of the photograph is ignored and
the intensity features play a less important role in
the inner product than the color features.

V. TRAINING

I took four photographs that contained a to-
tal of seven faces affected by red-eye and four
photographs that did not contain red-eye. I first
manually identified the red-eye in photos where it
was present, as illustrated in figure 2. The top image
in the figure shows a section of the original photo,
and the bottom image shows the same section with
the pixels designated as red-eye indicated in black.

I randomly selected 100 red-eye pixels and 100
non-red-eye pixels from each of the affected photos,
as well as 100 pixels from each of the photos that
didn’t contain red-eye. For each selected pixel I
collected up to three training samples by gathering
the features described in section IV at three different
zoom scales. In other words, I gathered one sample
using features exactly as described, one after down-
sampling the photo by two, and one after down-
sampling the photo by four. In cases where the
selected pixel was too close to the edge of the photo
to retrieve the full context (set of features), that data
sample was omitted. In all there were about 3,600
training samples.

The support vector machine used a Gaussian ker-
nel with σ2 = 176.4 and the `1 norm regularization
scaling factor was C = 10.



Fig. 3. Automatic Classification: Original photograph (left) and
red-eye marked in black (right)

Fig. 4. Automatic Classification: Original photograph (left) and
red-eye marked in black (right)

VI. RESULTS

I tested the algorithm on eight photos that weren’t
used for training. In these photos, each pixel that
wasn’t too close to an edge was classified by
gathering the features in the context around it after
down-sampling by a factor of two. Overall misclas-
sification was around 9.5%, with false positives at
9% and false negatives at 15%.

In figure 3, figure 4, figure 5, and figure 6 the
pixels classified as red-eye are marked in black.

Figure 3 shows an example where the red-eye
is correctly identified, but also some skin locations
are incorrectly classified as red-eye. Figure 4 nicely
illustrates the fact that the algorithm is not only
searching for red color. Notice that the lips are red,
but they are not falsely identified as red-eye. On the
other hand, some stray marks on the forehead and
ear are made, and not all of the red-eye is com-
pletely identified. Figure 5 shows a case where no
red-eye exists and the algorithm correctly handled
it. Figure 6 also shows a case with no red-eye, yet
the algorithm has some false positives in the skin
region again.

VII. CONCLUSION

The red-eye detection algorithm presented in this
paper takes a simple approach to detect red-eye in a
photograph using only a support vector machine and

Fig. 5. Automatic Classification: Original photograph (left) and
red-eye marked in black (right)

Fig. 6. Automatic Classification: Original photograph (left) and
red-eye marked in black (right)

information from the context of each pixel. Other
tools could be used in conjunction with this, such
as first identifying faces and eyes before searching
for red-eye, but these would also be at the expense
of the simplicity of the algorithm.

The current performance of this algorithm is too
poor to be useful for practical purposes. The false
positive error rate is 9% on a pixel-by-pixel basis,
which means that most photographs will contain er-
rors. Perhaps with more training data this algorithm
could perform acceptably.

REFERENCES

[1] H. Y. Hui, “Automated Red-Eye Detection & Correction,” Final
Year Project, The University of Dublin — Trinity College, April
2004.


