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Introduction 
Neural prosthetics is a relatively new field that involves recording from neural activity in the 

cortex and decoding a useful signal that can be used to control an external device. There has been 
considerable recent interest in using such a system to provide brain controlled robotic limbs to amputees. 
However, due to the increased safety concerns and cost to patients undergoing neurosurgery, the viability 
of brain controlled robotic limbs depends on the ability to control many more degrees of freedom than 
currently available devices, and produce nearly arbitrary movement. While sufficiently articulated robotic 
limbs can be created, it still an open question whether sufficient control information can be obtained using 
the output of a few dozen neurons. Significant prior work has been done with animals selecting fixed 
targets by controlling a cursor on a screen with neural activity. One approach involves decoding the 
desired end point directly. This approach has resulted in the highest rate of information transfer reported 
to date, 6.5 bps. [1] However, controlling a robotic limb would require the second approach, which 
involves decoding trajectories rather than end point. Several groups have taken this approach, including 
recent work in humans, which utilized a Kalman filter for closed loop control of a cursor on a computer 
screen. This group and others have also demonstrated the ability for humans and monkeys to control 
robotic limbs with limited degrees of freedom in similar closed loop systems. [2-3,6] 
 However, a practical clinical system for a brain controlled robotic limb could not involve training 
on every possible reaching location the patient might require. Therefore, this class project evaluates the 
ability of several of these decoding algorithms to generalize to targets not seen in the training data set. 
This will involve driving a two-segment arm model in Matlab with neural data obtained from rhesus 
macaques making hand reaches to one of eight commanded targets. Several methods were used including 
linear regression with different position encoding schemes, a Kalman filter using the neural firing rates as 
a noisy measure of the desired position, and Naïve Bayes encoding discrete movement steps. Several 
groups still use linear regression to reconstruct end point trajectories due to its ease of implementation and 
fairly high performance [5,6]. However, it does not constrain the endpoint to realizable arm movements. 
A Kalman filter does constrain the movements to reasonable trajectories, and represents the current state 
of the art in human FDA trials for brain computer interfaces [7]. Finally, Naïve Bayes is similar to direct 
endpoint systems that have the highest reported performance, though extending this into trajectory 
decoding requires discretizing all aspects of the movement. These different approaches were first 
compared according to overall ability to generate correct trajectories in this experimental paradigm, and 
then evaluated based on how well the learned models generalized to targets left out of the training data. 

Methods 
 The neural data used for this project has been previously analyzed in [4]. It was obtained from a 
single rhesus macaque monkey, with a 96-electrode array implanted in pre-motor cortex. Each electrode 
can record the activity of ~0-4 neural units. The animal performed an eight-target center out reach task, 
while this activity was recorded for a total of 2.5 hours or 1072 reaches. Neural data was sorted using the 
Sahani spike sorting algorithm, which using automated clustering in principle component space, based on 
the spike waveforms [8,9]. Figure 1a. shows an example of the activity of individual neurons for a single 
reach, which is the raw input to this learning algorithm. Using the rate-coding assumption that relevant 
information is contained in a unit’s average firing rate, the number of spikes was summed over into 100 
ms bins, to provide an estimate of firing rate across time. The input matrix also includes 10 copies of each 
neuron’s firing rate with 100 ms lags up to 1 sec in the past, similar to [5]. 



 For this data set, only the (x,y,z) position of the hand was recorded. Therefore, a few assumptions 
were necessary to extrapolate kinematics of the whole arm. From observation of animals performing 
similar reaches, the shoulder position seems to remain fixed and the elbow position remains as low as 
possible, presumably to minimize energy consumption. Figure 1b shows an example of a reach in three 
dimensions, which is the desired output of the learning algorithm. 
 For the first method, linear regression was performed with limb position specified by either xyz 
position of the hand, joint angles, or change in xyz position from the previous position. Neural firing rates 
are causally linked to muscle force through a significantly non-linear relationship. Therefore, it’s difficult 
to predict which features of movement will result in the best linear estimation, so a few different features 
of the motion were evaluated.  
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 The Kalman filter used a linear estimation of hand position and velocity in the x,y,z directions 
from firing rates as the measurement, similar to linear regression, as in [7]. Velocity was estimated from 
distance traveled between sequential timesteps. The state equations for the filter are given in equations (3) 
and (4). The measurement at time i is the firing rates of all the neurons, X(i). This measurement is 
assumed to be generated from a linear relationship with the kinematic variables Y(i) as well as a noise 
term q(i), which is assumed to be Gaussian. The system also includes a term to describe how the state 
propagates in time with a added random walk element. These 4 matrices, H, q, A, and w, were assumed to 
be constant in time. Full derivations of the closed forms of these solutions can be found in [7]. Both the 
measurement noise q(i) and movement distribution w(i) was observed to be reasonably Gaussian in the 
training data set.  
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Using a generative approach with Naïve Bayes (NB), movement was encoded as a step of a given 

length at a given angle each 100 ms timestep. Several aspects of movement were discretized. First, a 
model was created to differentiate moving vs stationary. The x position of the hand was categorized as 
either touching or not touching the screen. Movement in the y,z plane used discrete steps in one of 32 
discretized angles.  Step size was simply equal to the average distance traveled during 100 ms of active 
motion. Firing rate was modeled  as Xi|yj ~ Poisson(λij) for each neuron and each category (moving vs 
not moving, touching vs touching, and 32 discrete angles). Since E(Xi|yj) = λij, estimates were 
determined as in (5). To attempt to better generalize to angles not seen in the training set. To accomplish 

Figure 1b. Example Reach Trajectory Figure 1a. Neural Data for one Reach 



this, smoothness of lambda was enforced across the target angles y using linear interpolation in one 
experiment. Note that p(y) was also enforced to be a uniform distribution, so that NB determined the most 
likely target using P(x|yj) alone, as shown in (6). 
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Results 
Overall Performance 

Linear regression successfully recreated from neural data three-dimensional trajectories highly 
correlated with the original trajectories. Figure 2 shows an example of a successful predicted reach. The 
training set used to generate the model included the first 896 reaches in the data set, while the test set 
included 129 subsequent reaches. Correlation coefficients between the predicted and actual xyz 
coordinates are shown in Table 1, column 1. The fourth row gives the percentage of time in which the 
hand came closest to the correct target, and the bottom row shows what percentage of the time the hand 
stopped within 3.5 cm of the target (in 3 dimensions). To try and determine whether the neural activity 
would be more closely tuned to alternate kinematic parameters, such as joint angle and change in position 
(rather than the absolute position) regression was performed representing the output in those formats. The 
results are shown in columns 2 and 3. Angle encoding performed just as well as hand position encoding, 
whereas decoding change in hand position led to cumulative errors that dramatically reduced 
performance. Finally, the Kalman filter had very similar performance to the linear regression, as 
shown in the fourth column 

   
Table 1. 

 

 
 

 Naïve Bayes was also applied to this problem, as described in the methods section. Model 
parameters λij were trained on the first 896 reaches in the data set and tested on 129 subsequent reaches. 
The performance is shown in Column 1 of Table 2. NB outperformed linear regression in both correlation 
with the actual reach position and error rate in hitting the target. Figure 3 shows an example of a 
successful reach using NB. Note that the trajectory looks reasonable despite being discretized.  

All together, these measurements together establish a baseline of these algorithms’ performance 
on this particular dataset. 

 Hand 
xyz 

Joint 
Angle 

Δxyz Kalman 
Filter 

ρx 0.43 0.43 0.16 
(p<0.001) 

0.05 
(not sig) 

ρy 0.82 0.82 0.59 0.80 
ρz 0.73 0.73 0.46 0.70 

%correct 81.4% 83% 59% 80% 
%hit 69.8% 69.8 90% 68% 

Figure 2. Linear Regression Predicted Reach 



Table 2 
 
 
 
 
 

 
 
 
 
 

 
Generalization 

All three algorithms were then trained with (using absolute position) with a dataset of 938 reaches 
missing 1 of 8 of the targets, and tested on 134 reaches to that target. Performance is shown in Table 3, 
while Figure 3 shows examples of resulting trajectories. Naïve Bayes predictably generalized the worst. It 
consistently picked neighboring targets, as shown in Figure 4 (right), and only rarely hit the correct target 
when guesses were oscillating between the two neighbors. Linear regression fared somewhat better. 
Correlation coefficients remained fairly high, and it hit the target 51% of the time, compared to 69% 
previously. The Kalman filter had the best generalization performance at a 60% hit rate. This makes 
sense, since linear regression often moved roughly in the correct direction with unreasonable abrupt 
jumps from place to place. The Kalman filter always produced reasonable trajectories that were also 
roughly the correct direction.  

 
 

 
 

Table 3.  
 Linear Regression Kalman Filter Naïve Bayes 

ρx 0.43 0.002 (notsig) 0.22 
ρy 0.76 0.77 0.78 
ρz 0.57 0.54 0.30 

%correct 75% 76% 29% 
%hit 51% 60% 21% 

 
The generalization of Naïve Bayes could be somewhat improved by finding the λij for each angle 

and smoothing them according to a cosine fit. Figure 5 shows an example of the smoothed λij for all 32 
possible angles in which the algorithm can take a step. This increased the generalization performance to 
50% for the missing target as shown in Table 4. However, general performance on the other targets was 
substantially reduced to 62%. 

 Naïve 
Bayes 

ρx 0.22 
ρy 0.93 
ρz 0.90 

%correct 87.6% 
%hit 87.6% 

Figure 3. Predicted Reach to Left-Out Target 

Figure 3. Naïve Bayes Predicted Reach 

Figure 4. Reaches to Novel Targets 

Kalman 
Linear 
Regression Naïve 

Bayes 



Table 4 
 

 

 

 

 

 

Discussion 
 All three models had good performance with a complete training set that included all 8 targets. 
Naïve Bayes performed the best, taking advantage of the limited number of possibilities. Conversely, 
Naïve Bayes had the worse performance on novel targets, almost exclusively going to the targets near the 
correct target. The Kalman filter had the best performance on novel targets, presumably because it made 
the strongest modeling assumptions about the system. Not only did it include a linear estimate of position 
and velocity from firing rates, but it also included a model for how the hand is capable of moving.  
 In the future, generalization will be a growing issue in neural prosthetic design. Current systems 
controlling a 2-D cursor take approximately 0.5 hour of model training for 2 hours of use, so it would be 
difficult to use a more inclusive training set. [3] Transitioning to motion prosthetics, not only will systems 
have to reach to novel locations, but users may also require control of speed and posture. It will not be 
straightforward to infer average neural firing rate across all of these variables, even if the signal did not 
have a significant noise component. Therefore, given such limited input, learning algorithms will likely 
have to make very strong and correct model assumptions about how the arm tends to move. However, 
with such a system, it may be possible to achieve nearly arbitrary movement in a brain-controlled arm 
prosthetic. 
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 Novel Target Other Targets 
ρx 0.22 0.22 
ρy 0.91 0.90 
ρz 0.12 

(p<0.001) 
0.72 

%correct 50% 62% 
%hit 50% 62% 

Figure 5. Cosine smoothed firing rates 


