
Predicting 3-Dimensional Arm Trajectories from the Activity of Cortical Neurons
for Use in Neural Prosthetics

Cynthia Chestek – CS 229 Midterm Project Review 11-17-06

Introduction
Neural prosthetics is a relatively new field that involves recording from neural activity in the

cortex and decoding a useful signal that can be used to control an external device. There has been
considerable recent interest in using such a system to provide brain controlled robotic limbs to amputees.
However, due to the increased safety concerns and cost to patients undergoing neurosurgery, the viability
of brain controlled robotic limbs depends on the ability to control many more degrees of freedom than
currently available devices, and produce nearly arbitrary movement. While sufficiently articulated robotic
limbs can be created, it still an open question whether sufficient control information can be obtained using
the output of a few dozen neurons. Significant prior work has been done with animals selecting fixed
targets by controlling a cursor on a screen with neural activity. One approach involves decoding the
desired end point directly. This approach has resulted in the highest rate of information transfer reported
to date, 6.5 bps. [1] However, controlling a robotic limb would require the second approach, which
involves decoding trajectories rather than end point. Several groups have taken this approach, including
recent work in humans, which utilized a Kalman filter for closed loop control of a cursor on a computer
screen. This group and others have also demonstrated the ability for humans and monkeys to control
robotic limbs with limited degrees of freedom in similar closed loop systems. [2-3,6]
 However, a practical clinical system for a brain controlled robotic limb could not involve training
on every possible reaching location the patient might require. Therefore, this class project evaluates the
ability of several of these decoding algorithms to generalize to targets not seen in the training data set.
This will involve driving a two-segment arm model in Matlab with neural data obtained from rhesus
macaques making hand reaches to one of eight commanded targets. Several methods were used including
linear regression with different position encoding schemes, a Kalman filter using the neural firing rates as
a noisy measure of the desired position, and Naïve Bayes encoding discrete movement steps. Several
groups still use linear regression to reconstruct end point trajectories due to its ease of implementation and
fairly high performance [5,6]. However, it does not constrain the endpoint to realizable arm movements.
A Kalman filter does constrain the movements to reasonable trajectories, and represents the current state
of the art in human FDA trials for brain computer interfaces [7]. Finally, Naïve Bayes is similar to direct
endpoint systems that have the highest reported performance, though extending this into trajectory
decoding requires discretizing all aspects of the movement. These different approaches were first
compared according to overall ability to generate correct trajectories in this experimental paradigm, and
then evaluated based on how well the learned models generalized to targets left out of the training data.

Methods
 The neural data used for this project has been previously analyzed in [4]. It was obtained from a
single rhesus macaque monkey, with a 96-electrode array implanted in pre-motor cortex. Each electrode
can record the activity of ~0-4 neural units. The animal performed an eight-target center out reach task,
while this activity was recorded for a total of 2.5 hours or 1072 reaches. Neural data was sorted using the
Sahani spike sorting algorithm, which using automated clustering in principle component space, based on
the spike waveforms [8,9]. Figure 1a. shows an example of the activity of individual neurons for a single
reach, which is the raw input to this learning algorithm. Using the rate-coding assumption that relevant
information is contained in a unit’s average firing rate, the number of spikes was summed over into 100
ms bins, to provide an estimate of firing rate across time. The input matrix also includes 10 copies of each
neuron’s firing rate with 100 ms lags up to 1 sec in the past, similar to [5].

 For this data set, only the (x,y,z) position of the hand was recorded. Therefore, a few assumptions
were necessary to extrapolate kinematics of the whole arm. From observation of animals performing
similar reaches, the shoulder position seems to remain fixed and the elbow position remains as low as
possible, presumably to minimize energy consumption. Figure 1b shows an example of a reach in three
dimensions, which is the desired output of the learning algorithm.
 For the first method, linear regression was performed with limb position specified by either xyz
position of the hand, joint angles, or change in xyz position from the previous position. Neural firing rates
are causally linked to muscle force through a significantly non-linear relationship. Therefore, it’s difficult
to predict which features of movement will result in the best linear estimation, so a few different features
of the motion were evaluated.

elneurfiringhandpos BXY mod= (1) YXXXB TT 1)(−= (2)

 The Kalman filter used a linear estimation of hand position and velocity in the x,y,z directions
from firing rates as the measurement, similar to linear regression, as in [7]. Velocity was estimated from
distance traveled between sequential timesteps. The state equations for the filter are given in equations (3)
and (4). The measurement at time i is the firing rates of all the neurons, X(i). This measurement is
assumed to be generated from a linear relationship with the kinematic variables Y(i) as well as a noise
term q(i), which is assumed to be Gaussian. The system also includes a term to describe how the state
propagates in time with a added random walk element. These 4 matrices, H, q, A, and w, were assumed to
be constant in time. Full derivations of the closed forms of these solutions can be found in [7]. Both the
measurement noise q(i) and movement distribution w(i) was observed to be reasonably Gaussian in the
training data set.

)()()(iqiHYiX += (3))()()1(iwiAXiX +=+ (4)

Using a generative approach with Naïve Bayes (NB), movement was encoded as a step of a given

length at a given angle each 100 ms timestep. Several aspects of movement were discretized. First, a
model was created to differentiate moving vs stationary. The x position of the hand was categorized as
either touching or not touching the screen. Movement in the y,z plane used discrete steps in one of 32
discretized angles. Step size was simply equal to the average distance traveled during 100 ms of active
motion. Firing rate was modeled as Xi|yj ~ Poisson(λij) for each neuron and each category (moving vs
not moving, touching vs touching, and 32 discrete angles). Since E(Xi|yj) = λij, estimates were
determined as in (5). To attempt to better generalize to angles not seen in the training set. To accomplish

Figure 1b. Example Reach Trajectory Figure 1a. Neural Data for one Reach

this, smoothness of lambda was enforced across the target angles y using linear interpolation in one
experiment. Note that p(y) was also enforced to be a uniform distribution, so that NB determined the most
likely target using P(x|yj) alone, as shown in (6).

∑
∑

=

⋅=
=

i

i

i
n

i

i

nj jy

xjy

)(1

)(1

)(

)()(

λ (5) ∑ −=
n

x
nj

jj
nj

n

e
x

yxp)
!

log()|(max λλ
 (6)

Results
Overall Performance

Linear regression successfully recreated from neural data three-dimensional trajectories highly
correlated with the original trajectories. Figure 2 shows an example of a successful predicted reach. The
training set used to generate the model included the first 896 reaches in the data set, while the test set
included 129 subsequent reaches. Correlation coefficients between the predicted and actual xyz
coordinates are shown in Table 1, column 1. The fourth row gives the percentage of time in which the
hand came closest to the correct target, and the bottom row shows what percentage of the time the hand
stopped within 3.5 cm of the target (in 3 dimensions). To try and determine whether the neural activity
would be more closely tuned to alternate kinematic parameters, such as joint angle and change in position
(rather than the absolute position) regression was performed representing the output in those formats. The
results are shown in columns 2 and 3. Angle encoding performed just as well as hand position encoding,
whereas decoding change in hand position led to cumulative errors that dramatically reduced
performance. Finally, the Kalman filter had very similar performance to the linear regression, as
shown in the fourth column

Table 1.

 Naïve Bayes was also applied to this problem, as described in the methods section. Model
parameters λij were trained on the first 896 reaches in the data set and tested on 129 subsequent reaches.
The performance is shown in Column 1 of Table 2. NB outperformed linear regression in both correlation
with the actual reach position and error rate in hitting the target. Figure 3 shows an example of a
successful reach using NB. Note that the trajectory looks reasonable despite being discretized.

All together, these measurements together establish a baseline of these algorithms’ performance
on this particular dataset.

 Hand
xyz

Joint
Angle

Δxyz Kalman
Filter

ρx 0.43 0.43 0.16
(p<0.001)

0.05
(not sig)

ρy 0.82 0.82 0.59 0.80
ρz 0.73 0.73 0.46 0.70

%correct 81.4% 83% 59% 80%
%hit 69.8% 69.8 90% 68%

Figure 2. Linear Regression Predicted Reach

Table 2

Generalization

All three algorithms were then trained with (using absolute position) with a dataset of 938 reaches
missing 1 of 8 of the targets, and tested on 134 reaches to that target. Performance is shown in Table 3,
while Figure 3 shows examples of resulting trajectories. Naïve Bayes predictably generalized the worst. It
consistently picked neighboring targets, as shown in Figure 4 (right), and only rarely hit the correct target
when guesses were oscillating between the two neighbors. Linear regression fared somewhat better.
Correlation coefficients remained fairly high, and it hit the target 51% of the time, compared to 69%
previously. The Kalman filter had the best generalization performance at a 60% hit rate. This makes
sense, since linear regression often moved roughly in the correct direction with unreasonable abrupt
jumps from place to place. The Kalman filter always produced reasonable trajectories that were also
roughly the correct direction.

Table 3.
 Linear Regression Kalman Filter Naïve Bayes

ρx 0.43 0.002 (notsig) 0.22
ρy 0.76 0.77 0.78
ρz 0.57 0.54 0.30

%correct 75% 76% 29%
%hit 51% 60% 21%

The generalization of Naïve Bayes could be somewhat improved by finding the λij for each angle

and smoothing them according to a cosine fit. Figure 5 shows an example of the smoothed λij for all 32
possible angles in which the algorithm can take a step. This increased the generalization performance to
50% for the missing target as shown in Table 4. However, general performance on the other targets was
substantially reduced to 62%.

 Naïve
Bayes

ρx 0.22
ρy 0.93
ρz 0.90

%correct 87.6%
%hit 87.6%

Figure 3. Predicted Reach to Left-Out Target

Figure 3. Naïve Bayes Predicted Reach

Figure 4. Reaches to Novel Targets

Kalman
Linear
Regression Naïve

Bayes

Table 4

Discussion
 All three models had good performance with a complete training set that included all 8 targets.
Naïve Bayes performed the best, taking advantage of the limited number of possibilities. Conversely,
Naïve Bayes had the worse performance on novel targets, almost exclusively going to the targets near the
correct target. The Kalman filter had the best performance on novel targets, presumably because it made
the strongest modeling assumptions about the system. Not only did it include a linear estimate of position
and velocity from firing rates, but it also included a model for how the hand is capable of moving.
 In the future, generalization will be a growing issue in neural prosthetic design. Current systems
controlling a 2-D cursor take approximately 0.5 hour of model training for 2 hours of use, so it would be
difficult to use a more inclusive training set. [3] Transitioning to motion prosthetics, not only will systems
have to reach to novel locations, but users may also require control of speed and posture. It will not be
straightforward to infer average neural firing rate across all of these variables, even if the signal did not
have a significant noise component. Therefore, given such limited input, learning algorithms will likely
have to make very strong and correct model assumptions about how the arm tends to move. However,
with such a system, it may be possible to achieve nearly arbitrary movement in a brain-controlled arm
prosthetic.

References
I would like to acknowledge Gopal Santhanam, Byron Yu, and Afsheen Afshar for allowing me to use neural data
they had collected for another research program. Also, Prof. Krishna Shenoy provided guidance regarding the
appropriate algorithms and the open questions in the field of neural prosthetics.

[1] Santhanam, G., Ryu, S. I., Yu, B. M., and K. V. Shenoy. “A high performance brain computer interface.”
Nature. 442:195-198.
[2] Taylor, D. M., Tillery, S. I. H., and A. B. Schwartz. “Information conveyed through brain control: Cursor versus
robot.
[3] Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan, A. H., Branner, A., Chen, D.,
Penn, R. D. and J. P. Donoghue. “Neuronal ensemble control of prosthetic devices by a human with tetraplegia.”
Nature. 442:164-171.
[4] Yu, B. M., Ryu, S. I., Churchland, M. M., and K. V. Shenoy. “Improving neural system performance by
combining plan and peri-movement activity.” Proc. IEEE EMBS. San Francisco, CA Sept 1-5, 2004. p4516-4519.
[5] Carmena, J. M., Lebedev, M. A., Henriquez, C. S., and M. A. L. Nicolelis. “Stable ensemble performance with
single neuron variability during reaching movements in primates.” J. Neurosi. 25(46):10712-10716.
[6] Lebedev, M. A., Carmena, J. M., O’Doherty, J. E., Zacksenhouse, M., Henriquez, C. S., Principe, J. C., and M.
A. L. Nicolelis. “Cortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brain-
machine interface.” J. Neurosci. 25(19):4681-4693.
[7] Wu, W., Gao, Y, Bienenstock, E., Donoghue, J. P. and M. J. Black. “Bayesian population decoding of a motor
cortical activity using a Kalman filter.” Neural Computation 18:80-118, 2006.
[8] M. Sahani, “Latent variable models for Neural Data Analysis.” Computational and Neural Systems Program:
California Institute of Technology, 2004.
[9] Santhanam, G., Sahani, M., Ryu, S. I., and K. V. Shenoy. “An extensible infrastructure for fully automated spike
sorting during online experiments.” Proc 26th IEEE EMBS, San Francisco, CA. 4380-4384, 2004.

 Novel Target Other Targets
ρx 0.22 0.22
ρy 0.91 0.90
ρz 0.12

(p<0.001)
0.72

%correct 50% 62%
%hit 50% 62%

Figure 5. Cosine smoothed firing rates

