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1. Overview 
 
The CALO project is an ongoing effort to develop a Cognitive Assistant that Learns and Organizes. 
Stanford CSLI is working on the meeting assistant section of the CALO project, which involves recording 
a meeting, dividing the meeting into topics, and summarizing the meeting for later reference. At this 
point, automated speech recognition has been used to determine the word distributions of the meetings, 
but the topics are difficult to extract because the speech transcripts still have a high word error. Our goal 
is to first correlate a set of documents with their associated meetings based on their word distributions and 
then improve topic extraction for the meetings by using these clusters of related documents and meetings. 
 
2. Background Information 
 
The corpus consists of forty-six meetings held by different sets of CALO researchers over the course of a 
year regarding their ongoing project.  Thus, many of the meetings discuss very closely-related topics, 
making the task of distinguishing between separate meetings very challenging.  Each speaker used a 
separate microphone, so there is no confusion about which utterance was made by which speaker. 
Approximately sixteen of the meetings also have associated documents, which can include e-mail threads, 
published papers, web pages, attendee notes, and PowerPoint presentations. The size of the document sets 
range from one to twenty-two, and the total number of documents is around eighty. 
 
3. Preprocessing Transcripts and Documents 
 
One of our initial problems was that our word vectors were extremely large.  Because our data is 
composed of documents and speech, there were a significant number of words associated with each 
transcript we read.  Thus, before assembling our word vectors, we explored various hypotheses on how 
the removal of certain words would impact the effectiveness of our clustering algorithms.  These five 
hypotheses are as follows. 
 
First, we sifted out all punctuation from the text other than hyphens, changed all letters to lower case, 
changed all contractions to two distinct words, removed all “stop” words (filler words devoid of content, 
such as “uh”), and removed non-verbal expressions (such as ‘[laugh]’).  This filtration reduces the word 
vector size, and also reduces the differences between the meeting transcripts and their associated 
documents.  Thus, we hypothesized that this filtration will always improve our clustering. 
 
Second, the transcripts from the speech recognizer could be output in a format that either included or 
excluded the names of each speaker.  Presumably, including the names of the speakers would lead to a 
high similarity between the transcripts themselves and cause them to group with each other rather than 
with the documents.  Thus, we hypothesized that removing the names would increase the effectiveness of 
clustering. 
 
Third, we decided to test the effect of stripped “rare” words, those that only appear once in any of the 
documents, out of the documents.  We hypothesized that this smoothing would increase the effectiveness 
of the clustering by making them more similar overall, which in fact it did. We then tailored the 
algorithms and our processing of the data to more effectively deal with the disparities between meeting 
transcripts and documents. 
 



Fourth, we tested the effects of removing numerical digits from the documents and transcripts.  We 
hypothesized that even though documents may cluster on these items, they would reveal little about the 
topics of the documents and meetings, and thus could lead to adverse effects on our clustering coherency.  
It turns out that removing digits had a negligible effect on clustering. 
 
Finally, we removed all but the top 50 words from each word vector to see if we could isolate only the 
most important words to cluster on.  Unfortunately, this actually hurt performance, as too much 
information was lost in this blind eradication of words.  The more intelligent removal of words from our 
general filtering was much more effective in reducing our error rates. 
 
4. Algorithms 
 
The central algorithm to our project was K-means. K-means is a simple coordinate descent algorithm that 
has been extended and applied extensively in text classification [1,2,3,4].  It turns out that K-means is 
both quick and fairly effective for document and speech clustering.  Note that we treated the meeting 
transcripts as documents, so in this paper we occasionally use the term “document” to refer to all 
documents and transcripts. A plaintext version of each document was created for every file that was not 
originally in plaintext. 
 
We tried four main variations of K-means. The first variation was the standard algorithm. The number of 
clusters chosen was 46, which is the same as the number of meetings in the corpus. The clusters were 
originally initialized by randomly selecting existing documents and setting the centroids of the clusters to 
be equal to the selected documents.  The algorithm was run until the cluster centroids no longer moved 
within a tolerance of 0.001. This algorithm worked reasonably, but often developed clusters of either 
transcripts or documents.  Thus, we sought an alternative that would encourage the transcripts to group 
with the documents rather than with each other. 
 
This was achieved with our second variation.  We initialized each centroid to an associated transcript 
rather than a random document, and proceeded to run K-means from there.  This method has two 
advantages.  First, the transcripts and documents are now forced to cluster together, so we didn't have to 
worry about normalizing spoken text to written text.  Second, since the clusters were no longer random 
and the search space was extremely dependant on the initialization, we could now more accurately 
compare error rates of the algorithm run on different sets of pre-processed data.  However, this method 
also encouraged documents that start off being clustered in the "correct" cluster to move away from their 
original location, which increased our error rates. 
 
Our third variation of K-means attempted to take this initialization one step further by fixing the meeting 
transcripts to a particular cluster. The cluster centroids could change in successive iterations due to the 
assignment of the documents, but the assigned transcript would in some way anchor the cluster to a 
particular region. 
 
The last variation of K-means only ran the algorithm for one iteration, which forced the documents to 
cluster solely based on their initial distance to the different transcripts. The idea behind this method is that 
it would provide a hard comparison of the difference between each transcript and all the documents, 
which may be more representative of topical relevance than a result achieved by allowing the system to 
conduct coordinate descent to some optimal value. In this case, each document would be clustered with its 
closest transcript without having the possibly of moving away from the cluster due to other similar 
documents not in its meeting. This last method actually worked well for badly-processed data, but our 
lowest error rates came from running allowing K-means to run in full on properly processed data with the 
centroids initialized to the meeting transcripts.  
 



In addition to these four variations on K-means, we also tried two different ways of weighting the word 
vectors that we generated from our preprocessing.  First, we weighted the words in each vector by their 
TFIDF (Term Frequency Inverse-Document Frequency) scores. The TFIDF weight for word j in 
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the corpus, and df = number of documents in which j occurs. This reduces the weight of common words in 
a word vector and increases the relevance of unique words in determining the similarity of two vectors. 
Overall, TFIDF focuses the clusters on words that are central to the meeting's topic by discounting words 
that offer no discriminating value between the documents. Second, we normalized the lengths of both the 
transcripts’ vectors and the documents’ vectors, which prevented the documents from clustering to the 
shortest meeting. These weighting mechanisms, combined with appropriate filtering, allowed us to 
improve dramatically from the baseline performance. 
 
5. Results 
 
We scored the results of the algorithm as follows: for each meeting, we find the cluster which contains the 
largest proportion of the documents for that meeting. The coherency error is a measure of cluster purity - 
the percent of documents in the cluster that are not for that meeting. The density error for the meeting is 
the percent of the documents for the meetings that are not in that cluster. In the example below, meeting 1 
has the largest proportion of its documents in Cluster A. Because the total size of Cluster A is 5, the 
coherency error is 1 - 3/5 = 2/5. Meeting 1 has 4 total documents, so its density error is 1 – 3/4 = 1/4. 

 
 Cluster A Cluster B 
Meeting 1 3 1 
Meeting 2 2 5 
 
Looking at both these error rates gives a better view of how the algorithm is performing than looking at 
either separately. A perfect clustering would have coherency and density scores of 0. An improvement in 
density error accompanied by a decrease in coherency error tends to reflect fewer, larger clusters 
containing multiple meetings, while an improvement in coherency accompanied by a decrease in density 
tends to reflect lots of small clusters with very fragmented meetings. Neither of these is ideal, so using 
both measures prevents “optimizing” our clusters with respect to one error value without actually 
improving the quality of the clusters. 
 
Our main results can be seen in the table below: 
 

Filtering Top 50 TFIDF 
Fixed meeting transcripts 
to each cluster 

Coherency 
Error 

Density Error 

NO NO NO NO .908 .264 

YES NO NO NO .660 .475 

YES  YES  NO NO .420 .556 

YES  YES  NO YES  .418 .501 

YES  YES  YES  YES  .405 .548 

YES  NO YES  YES  .381 .443 

YES  NO YES  NO .366 .443 

 
The first row of the table is our baseline; the very low density error is a result of everything basically 
clustering into one cluster, which can be seen in the high coherency error. The last row of the table 



represents the best score we achieved; while the density error is worse than the baseline, it reflects a much 
higher degree of clustering by topic, as shown by the significantly reduced coherency error.  We can see 
that filtering and TFIDF improved both the coherency and density error of our clustering.  However, it 
came as a surprise that allowing meeting transcripts travel between clusters actually improved the 
coherency error and the density error.  This was unexpected because we assumed that allowing for 
moving transcripts would allow the transcripts to cluster together too much.  Apparently the combined use 
of filtering and TFIDF prevented this from being a significant problem and instead, allowing K-means to 
run in full actually encourage the transcripts to move towards more similar documents rather than each 
other. 
 
As a whole, the error rates from our table seem to be very high.  However, we made a couple assumptions 
on our metrics that are slight approximations to what we want, so at some point further reduction of these 
error rates would deviate from our true goal.  First, although these documents were assigned by meeting 
participants to their associated meetings, there may be documents from other topically related meetings 
that may also be beneficial.  Thus, direct correlation between meetings and documents may not always 
provide us with the best results.  Second, these error scores are artificially raised because many of the 
meetings had the same documents associated with them, and clearly the same document can't cluster with 
two different meetings.  Finally, some documents may be tied only tangentially with a meeting, perhaps 
with some topic that was only touched upon briefly in the meeting.  Thus, these documents, although they 
should belong to that meeting, could be classified elsewhere because their primary topics may not align 
with the primary topics from the meeting. 
 
6. Qualitative Topic Extraction 
 
Having seen the results and limitations of our clustering algorithm, we decided we needed additional 
information to determine if the clusters were actually being grouped by topic correctly.  Unfortunately, we 
could not come up with a great quantitative measure of topic relevance other than the ones we have 
already trained on.  Thus, in order for us to observe the topic cohesion of each cluster, we developed four 
qualitative metrics to determine the effectiveness of our algorithm.  The clusters themselves are word 
vectors that represent the centroids of the documents and meetings that belong to that cluster.  Thus, their 
word frequency values are used to determine what words are most representative of the documents in that 
cluster.  An example of all four metrics for each cluster in presented in [B]. These metrics also are a very 
crude form of topic extraction that could be used for future extensions. 
 
First, we determined the most similar words in each cluster. Similar here is a misnomer; it actually refers 
to the similarity in the TFIDF value of the word. We chose the words in each cluster that had the smallest 
squared distance between all the documents and meetings in that cluster.  This was then weighted by the 
frequency of the word to avoid the fact that words with small frequencies would all tend to cluster 
together (since they very little variation). 
 
Second, we determined the most different words in a cluster with respect to all other clusters.  Again, 
different here is a misnomer because difference refers to a difference in TFIDF value and not in the actual 
appearance of a word.  We chose these words as the greatest squared distance between the cluster and all 
other clusters, weighted by the frequency of the word to prevent the selection of low-frequency words that 
may not be representative of the words in this cluster. 
 
Finally, we determined the most common and least common words in a cluster based on the size of the 
TFIDF value. Therefore, the least common words can actually be very common by number of occurrences 
if the document frequency is high. 
 
Looking at the results, we found that the "most different words between clusters" gave us the most 
qualitative coherency of topics for a given cluster.  For example, Cluster#20 has words like "recruiters," 



"people," "hr," "talent," and "employees."  When we looked at the actual content of the meetings and 
documents associated with this cluster, it turns out the meeting was about hiring a new software developer 
for the team, with associated documents on best hiring practices.  Many of the "different words" for the 
other clusters were found to have similar cohesion in their topics as well.  Thus, from a human heuristic 
standpoint, it appears that our algorithm works quite well on grouping documents and meetings by topic. 
 
Furthermore, it turns out that our method using associated documents to help us extract topics from the 
meetings despite speech recognition errors is highly effective. Cluster #37 contains the word “wubhub” 
among its “Most Different Words” list. The cluster consists of a meeting and some of its related 
documents. Although part of the meeting is spent discussing the website “Wubhub,” the speech 
recognizer interpreted the term in various ways such as “what pulp.” Nowhere in the meeting transcript 
does the term “wubhub” appear, but the word was still able to be extracted in the cluster topic from the 
related documents. 
 
7. Further work 
 
Further work on this topic could be conducted in several ways.  First, having more meeting transcripts 
with uniquely associated documents would be very helpful, since our data set was fairly small.  
Additional meetings could be used to identify errors caused by quirks in the data and make sure that our 
filtering does not over-fit the data.  Second, using the probabilities associated with each word (generated 
by the speech recognition system) could also be helpful; this might reduce errors in a situation where the 
recognizer picks the wrong word, but the correct word has a very similar score. Another algorithm that we 
could experiment with is fuzzy clustering, where documents can belong to more than one cluster.  This 
might help the solve problem of having documents assigned to more than one meeting.  Finally, we could 
also try PCA to further reduce the noise in the data by reducing the dimensionality of the word vectors. 
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