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Introduction 

Unmanned Aerial Vehicles (UAVs) have recently become popular for aircraft missions 
that would be dangerous or exceedingly boring for human pilots. One potential application of 
UAVs is for extremely long endurance missions, such as for military surveillance or for 
commercial use as atmospheric satellites. For this reason, extending the endurance of UAV 
flight is currently an area of major research interest. 

One way to extend the duration of a UAV's mission is to take advantage of energy 
available in the atmosphere in the form of wind velocity gradients, or wind gusts. By adjusting 
an aircraft's attitude, speed, and direction of travel when it encounters a gust, a properly 
trained pilot can greatly extend the duration of a flight, even indefinitely if enough wind energy 
is available. Glider pilots, radio-control aircraft pilots, and birds all use these gust soaring 
techniques to reduce the amount of propulsive energy required to stay in the air. 

Designing an automatic control system to take advantage of atmospheric energy for 
extending mission duration is a very difficult problem. The flight environment is not easily 
predictable, and gust detection equipment such as Doppler radar and LIDAR is prohibitively 
expensive in both dollars and power usage. These issues make this a perfect problem for 
utilizing a machine learning algorithm with simpler sensors inputs. 

This project considered vertical thermal updrafts and how to best control the velocity 
and bank angle of the aircraft to extract the most energy from them. The goal of this project 
was to use reinforcement learning to determine control laws that lead to the longest duration 
flights on average. The control law inputs were based on sensors that can be placed on a 
small UAV. The aerodynamic properties and dynamics of a small UAV were modeled and 
used in a simulation with the control laws. A thermal model developed at NASA Dryden was 
used to model thermal generation based on the time of year, time of day and local 
atmospheric conditions. 
 Current research undertaken using the thermal model in maximizing duration of UAV’s 
at NASA has used heuristics to search for thermals and then makes a number of 
assumptions about tracking and centering in the updrafts (30 sec to center, then fly at optimal 
radius). Through reinforcement learning, improved performance should be obtainable without 
relying on heuristics to search for and self center in thermals.  
 
Thermal Model 

For this project, choose to use a thermal updraft model developed by Allen at NASA 
Dryden (Ref. [2]) for a similar autonomous UAV soaring project. This model was developed 
using atmospheric data collected by the NOAA in Nevada using rawinsonde balloons 
released every 12 hours over the course of a year. 
 Thermal updrafts form when an air mass close to the ground is warmed and becomes 
unstable. This air then begins to rise and cool until it reaches equilibrium with the surrounding 
atmosphere. Conservation of mass dictates that this rising air be replaced by generally 
sinking air outside the thermal updraft. Allen’s model provides the variation of the velocity and 
height parameters that characterize thermals, and also provides for the proper spacing and 
duration of thermal updrafts. 

For this project, we used Allen’s model to create a dynamic field of thermal updrafts of 
various characteristic heights, velocities, and durations inside a specified test area for one 
hour, which the UAV was constrained to fly inside. Figure 1 shows an example of such a field 



at a particular time during the simulation, where the wireframes indicate the extent of positive 
updraft velocities. Allen’s model of the ground assumes a uniform radiative heat flux over the 
test area. In the real world, thermals are more likely to be formed over certain ground 
features that radiate a lot of heat to the air, for example, paved parking lots. A possible 
modification of this model would increase the probability of thermals forming over certain 
parts of the test area and decrease the probability over other parts. This would likely have a 
significant impact on the machine learning aspects of this problem, as the UAV would 
hopefully learn to look for thermal updrafts in more likely areas. This modification is beyond 
the current scope of this project, however.  
 

 
Figure 1. Sample Thermal Updraft Field 

 
Dynamics Model 
 The airplane we modeled was based on a small unmanned glider built by a Stanford 
student, Chinmay Patel, for his research on autonomous soaring through high frequency 
gusts. This airplane was chosen because it is currently outfitted with an autopilot system and 
sensors, so as time permits the learned control algorithm could be tested on real hardware. 
The dynamic modeling of this airplane was simplified so that rapid simulation could be 
performed. The glider was modeled as a point mass with a simple parabolic drag polar. 
Based on the lift coefficient, bank angle, and updraft velocity, the flight path of the glider can 
be determined as well as the inputs to the control law at the next time step. The control 
outputs were the desired lift coefficient and the bank angle of the airplane. 

Sensors present on the airplane that were used as inputs to the control laws are the 
GPS position (x,y,z), GPS velocity (u,v,w), airspeed (V) and bank angle (�) all sampled at 4 
Hz. Some constraints were placed on the changes in the control output that are related to the 
dynamics of the actual airplane. These limits relate to the maximum pitch rate and roll rate of 
the actual airplane. The important properties of the airplane are tabulated in Table 1. 

This simple model captures the dynamics of the real airplane fairly accurately, but the 
assumptions create some short term dynamic differences from the real airplane. Unsteady 
and non-linear aerodynamics along with control transients limit the accuracy of the model in 



the regions of maximum control input, for this reason conservative constraints were placed on 
the pitch rate and roll rate. 

Table 1 Airplane Properties 
Mass 0.477 kg CLmax 1.2 
Wing Area 0.331 m2 

�max 30 deg 
Effective Aspect Ratio (eo*AR) 8.8 (dCL/dt)max 0.2 /sec 
CD0 0.025 (d�/dt)max 30 deg/sec 

 
Control Strategy 
 Due to run time constraints for this project, we chose a simple objective that would 
allow rapid simulation. The selected objective was to maximize the altitude of the UAV at the 
end of an hour of simulation. This rewards control strategies that find the most thermals and 
center as quickly as possible in them to gain as much altitude as possible.  

The control algorithm used in this project was based on a simple online learning 
strategy: the UAV attempts to find the strongest thermal updraft that it can and stays in it as 
long as possible, thereby gaining as much altitude as possible. To implement this strategy, 
we used a value function-based algorithm to estimate the vertical velocity at each point within 
the flying area. A separate control policy was then used to command the UAV to fly to the 
point within the flying area with the greatest expected vertical velocity. 
 More specifically, the online learning algorithm discretizes the flying area into 10-meter 
square cells. Initially, the expected vertical velocity in each cell is randomly set to a negative 
or very small positive value (between -1.0 and 0.01 m/s). The UAV can sense its own vertical 
velocity with GPS at each time step. As it flies, it updates its estimate of the vertical velocity 
of each cell that it enters to be the current measured velocity in that cell. If it reaches its target 
cell and finds a negative velocity there, it re-randomizes the estimates of the vertical 
velocities in all of the cells that it has not visited yet. Figure 2 shows an example of a value 
function field. Note that the path of the UAV is clearly visible among the noise of the 
randomized, un-visited cells, and that the location of thermals as plateaus of vertical velocity 
are also clearly visible. 

 
Figure 2. Sample Value Function Field 



 Because the updrafts have a finite lifetime, the value function estimate of a particular 
visited cell becomes less and less accurate depending on how recently the UAV has visited 
it. To reflect this increasing uncertainty with time, a discount factor of 0.995 was applied at 
each time step such that the estimated velocity of each cell gradually decays toward zero. 
 In our dynamics model, we have two control inputs to the flight path of the UAV: bank 
angle to control turning and lift coefficient to control speed and ascent/descent rate. The bank 
angle control policy used simple open-loop controller to control the heading, commanding the 
UAV to fly toward the desired point. The lift coefficient control policy, on the other hand, can 
greatly affect the performance of the overall algorithm. The optimal control policy will 
generally decrease the lift coefficient when outside a thermal updraft, increasing the flight 
speed and covering more area, which increases the chance of finding an updraft. 
 To find this optimal control policy, we implemented a policy search algorithm to 
maximize the altitude of the UAV after one hour. The policy family consisted of a linear 
combination of vertical velocity, bank angle, and a constant: BAwAc wL +∗+∗= φφ .  We used 
the stochastic gradient ascent algorithm to optimize these three coefficients.  Fifty simulations 
were performed for each policy at each step of the optimization, and the reward for a 
particular policy was taken to be the average final altitude of the fifty simulations. 
 
Results 
 This control strategy worked very well in our simulation. Two important parameters 
characterized each simulated flight of the UAV: whether the UAV found a thermal updraft, 
and if it found an updraft, whether it was able to avoid hitting the ground for the entire hour. 
The chance that the UAV will find a thermal if it flies in a straight line across the flight area is 
approximately 33% based on the thermal model. The sink rate of the UAV is approximately 
0.35 m/s, depending on its lift coefficient, so if it fails to find a thermal in its first five minutes 
from its initial altitude of 100 m, it will hit the ground. If it finds a thermal, however, its chances 
of staying aloft greatly increase. It is for these cases that the control policy has the greatest 
effect, since the policy affects how the UAV reacts when it finds a thermal updraft. Figure 3 
shows an example flight path in red, with thermals in blue.  The UAV has found two thermals, 
centered itself in their cores where the highest vertical velocities are found, and spiraled 
upward as high as possible. 
 We ran two of our control policies, the initial one from which stochastic gradient ascent 
was run and the final optimized policy, for 1000 simulations each in order to gauge their 
average performance. The initial and final policies are summarized in Table 2 below. For the 
initial policy, the UAV found thermals in 34.5% of the simulations. When it did find at least 
one thermal, it stayed aloft for the whole hour in 75.7% of the simulations. 

 
Table 2 Control Policy  

 Aw A� B 
Initial 0.1 0.05 0.65 

After 40 Iterations of Policy Search 0.073 0.084 0.745 
 

 For the optimized policy, the UAV found thermals in 37% of the simulations.  When it 
did find at least one thermal, it stayed aloft for the whole hour in 92.7% of the simulations. We 
conclude from these results that our policy search greatly increased the efficiency of our 
control of lift coefficient, allowing the UAV to stay aloft for longer flights. 



 
Figure 3.  Sample Simulated Flight Path 

 
Future Work 
 Several avenues are open for future work on the subjects that this project explored. As 
mentioned above, increasing the complexity of the thermal and aircraft dynamics models 
would help to increase the realism of the simulation. Additional control strategies could be 
explored, and the policy search could be refined. We also hope to eventually test the control 
algorithm on a real UAV platform. 
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