
  

Abstract—A reliable method for detecting planar regions in a 
video/stereo scene would be of great use to the field of computer 

vision. Solutions to this problem are applicable to object 

recognition, scene identification, and robot-related applications. 

In this paper we present a plane-finding algorithm that uses data 

from a binocular stereo camera system to produce labeled output 

images showing the major planes in a video scene. The algorithm 

is based on the three-dimensional Hough Transform but also 

presents many useful approaches and heuristics applicable to 

general plane-finding. 

I. INTRODUCTION 

he goal of our project was to use image and depth data 

from a stereo camera system to locate the major planes 

in an image. A successful algorithm would find immediate 

application in areas such as scene identification, object 

recognition, and robot-environment interaction. After trying 

several approaches built around unsupervised learning 

algorithms, we converged on an algorithm based on the 

three-dimensional Hough Transform. 

Our data was gathered using a binocular stereo camera 

with a 4-cm baseline. Our input data set consisted of images 

of indoor office and hallway scenes with varying levels of 

clutter. Each entry in the data set consisted of an image pair: 

one, a monochrome image from the camera's left eye, and 

two, a “depth map” containing the estimated distance value 

for each pixel (provided directly by the camera software [1]). 

Figure 1 shows two example pairs of images. Dark blue 

regions in the depth map indicate points where no distance 

readings were returned due to lack of distinct features in that 

area. 

One of our primary assumptions was that there were two 

types of evidence for planes: one, localized and contiguous 

evidence found on textured surfaces (such as desks), and 

two, sparse and scattered evidence when most of the plane is 

featureless and returns no depth data (such as walls and 

ceilings). Our algorithm focuses primarily on utilizing the 

first type of evidence since it was typically the most reliable. 

In regions where the second type of evidence predominates, 

our algorithm uses the mono image data to assist plane 

classification. 

 

 
 

II. THE ALGORITHM 

A. Depth Map Processing 

Before proceeding with computation, we observed that the 

stereo depth maps suffered from two main sources of noise: 

Gaussian noise on the distance readings and another source 

akin to “salt-and-pepper” noise which was caused by poor 

feature matching from the stereo camera (returning distance 

readings many meters off from the true values). To combat 

both of these sources of noise the depth map was subjected to 
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Fig. 1  Two example mono camera images (left side) and their 

corresponding depth maps (right side). Dark blue in the depth maps 

indicates places where no data was returned. 
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Fig. 2  Effects of modified low-pass filtering on the point cloud 

obtained by back-projecting the depth map shown on the lower right in 

Fig. 1. Here (a) is the original, unfiltered depth map and (b) is the 

filtered one. Note that the three vertical lines from the door are lost in 

(a) but appear strongly in (b). 



modified low-pass filtering before it was used. After back-

projecting the smoothed depth data into a 3D point cloud, the 

beneficial effects of this step can be seen in Figure 2. 

The depth map was also decimated in order to reduce 

computation time. We used a modified random decimation 

algorithm where points closer to the camera were decimated 

more heavily than points farther away, thus roughly preserving 

the density of data points per surface area in the point cloud. In 

images with many data points, the decimation ratio was usually 

10:1, but in sparse images no decimation was performed so as 

to retain all of the given data from the stereo camera. 

B. 3D Hough Transform 

Next the 3D Hough Transform is run on the 3D point cloud. 

In the Hough Transform, every point “votes” for every plane 

that passes within some distance of it. Thus the maximum 

response over the transform indicates the best guess for a plane 

in the region. 

Planes in the 3D Hough Transform are described by their 

normal vectors which are specified by two angles (azimuth, θ, 

and elevation, φ) and the vector’s Euclidean norm (ρ). Since 

the Hough Transform is discrete, it is parameterized by the 

step size in all three of these variables. Of the three of these, 

the Hough Transform’s maximum response was most sensitive 

to dρ  (as illustrated in Figure 3). We addressed this sensitivity 

by setting dρ to be 10 cm since this was small enough to detect 

most planes throughout the data set while still large enough to 

accommodate the noise. Step sizes of 5º proved sufficient for 

both dθ and  dφ. 

Another problem was that the Hough Transform’s maximum 

response over several, unconnected groups of points was often 

non-planar even when the individual groups themselves were 

very planar (this is illustrated in Figure 4). We addressed this 

problem by first performing 3D segmentation on the point 

cloud and then running the Hough Transform on each of those 

segmented groups in isolation. 

Our 3D segmentation algorithm works by quantizing the 

entire point cloud into a series of quantum boxes of size 

30x30x30 cm. Next it selects the quantum box containing the 

highest number of points and connects to it all of the other 

contiguous quantum boxes also containing a high number of 

points. This group is then labeled and removed from the set of 

points. This procedure is repeated until 80% of the point cloud 

has been grouped (the remaining 20% were typically outliers). 

A sample result of this 3D segmentation is shown in Figure 5. 

After this, the Hough Transform is run on each segmented 

group of points in the following manner. First, it is run over all 

of the points and the maximum response is determined (this is 

shown in Figure 6.a with the red points). Then all of the points 

corresponding to the maximum response are extracted and the 

Hough Transform is re-run on the remaining points (Figures 

6.b and 6.c show these successive applications of the Hough 

Transform). This is repeated until 70% of the original points 

have been exhausted (processing the final 30% often generated 

many weak plane guesses). 

C. Plane Guess Processing 

After the Hough Transform step, the algorithm possesses a 

series of plane guesses specified by their normal vectors, 

centroids, and all of their assigned points. These raw results 

often contain many false planes so they are first decimated: 

those guesses that are drawn from too few depth points or 
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Fig. 3  Example of the sensitivity of the 3D Hough Transform to 

dρ. The maximum response of the Hough Transform in each case 

is shown in yellow. In (a) dρ is chosen well and the maximum 

response selects a strong plane; in (b) dρ is slightly too large and 

the plane fit is off; and in (c) dρ is much too large and all planar 

information is lost. 
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Fig. 4  Example of the maximum response of the Hough 

Transform being skewed by separate groups of planar points even 

when dρ is chosen well. 
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Fig. 5  The effects of segmenting the point cloud in (a) are shown 

as color-coded groups in (b). (c) is obtained by projecting the 

color-coded groups back to a 2D image. 



which occupy too little surface area are thrown away. 

Also, because of the fineness of dρ, these guesses often 

contain many repetitious guesses for a single plane; thus the 

guesses are clustered. In this step, two or more planes are 

combined if their normal vectors are highly aligned and if their 

centroids also satisfy some similarity conditions. Also factored 

in are elements from each point cloud’s singular value 

decomposition which contained vital information on each 

plane’s geometry. 

We also made use of the requirement that valid planes do 

not occlude too many of the given stereo data points (we 

assume all planes are solid and opaque, so line-of-sight 

constraints must be satisfied). Thus, before any two plane 

guesses are combined, the supposed new plane is checked to 

see if it occludes too much depth data (this is illustrated in 

Figure 7). Single plane guesses are also dropped if they violate 

this occlusion rule themselves. 

Figures 9.e and 10.e show the results after this step: colored 

regions indicate points in evidence for the final plane guesses, 

and the attached point cloud plots show the normal vectors of 

all plane fits. 

D. Plane Region Labeling 

Finally we desired to make the plane labels match the 

monochrome images better. The output labels of the last step 

did not match very well because they were drawn entirely 

from the stereo data and so had little direct relation to the 

mono image boundaries. We corrected this by introducing 

image segmentation on the mono images. We used a super-

pixel-, graph-based approach published by Felzenszwalb and 

Huttenlocher [2]. An example output of their segmentation 

algorithm is shown in Figure 8. 

For the segmented images, we adjusted the parameters so 

that the segmentation was fine enough that each segment 

overlapped with only one final output plane with high 

probability. Thus, in the final step of the algorithm, each 

image segment is assigned to the plane label with which it has 

the most overlap (examples of these processed images appear 

in Figures 9.c and 10.c). This has the effect of spreading out 

the final plane labels into locations better-defined by the 

image boundaries, and it also allows a small amount of depth 

data to provide a plane label for large, texture-less regions that 

returned no data. 

III. RESULTS 

Figures 9 and 10 depict some representative results. For 

reference, images showing the results on all of our input data 

are attached to this report. 

Figure 9 shows a typical result on a textured, close-up 

image. Our algorithm performs best on these types of images 

since the planes are highly-textured and are close to the 

camera, producing dense point clouds and enabling very 

reliable results. 

Figure 10 shows a result on a cluttered indoor scene with 

most objects lying farther away from the camera than in Figure 

9. Here the algorithm still succeeds at finding most of the 
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Fig. 6  Iterative procedure for running the Hough Transform. (a) 

shows the first maximum response; (b) shows the next maximum 

response after the points from the first have been removed; and (c) 

shows the last maximum response. (d) shows these three plane labels 

on the corresponding mono image. 

 

Fig. 7  Plane occlusion example. Here the algorithm considers 

combining the two separate light blue groups into one plane. It 

calculates the convex hull (blue outline) of the new, proposed plane 

and checks whether it occludes any points. In this example, the 

purple points lie in front of the plane and are not occluded, but the 

yellow and green points lie behind the plane and are occluded. Thus 

the two blue planes are not combined into a single plane. 

 

Fig. 8  Sample output of the image segmentation algorithm by 

Felzenszwalb and Huttenlocher [2]. Parameters set to k=500, σ=0.3. 



planes but it has trouble assigning them to the proper image 

regions. It also exhibits many more spurious results than in the 

previous example. 

IV. CONCLUSIONS AND FUTURE WORK 

Overall our algorithm succeeded in finding many planes in 

certain settings. It works best in scenes with high-texture and 

low clutter where it is able to identify both the correct planes 

and their orientations with high accuracy. It is still weak in 

finding occluded planes in cluttered environments as well as in 

low-texture images with very sparse depth data. And even 

when it finds the correct planes it is still prone to mislabeling 

them in the output step. 

 The results achieved so far are promising, but there are 

many possible directions for improvement. For instance, our 

algorithm produces hard classifications, but another approach 

would be to build a probabilistic model that estimates the 

number of planes through an adaptive method and then assigns 

weights to each point indicating how likely they are to appear 

in each plane. 

One could also employ prior assumptions about the 

geometry of the room to reduce spurious results. Some 

possible assumptions include that there are always walls 

bounding the scene, that the major planes should be 

orthogonally oriented (the walls, floor, and ceiling), and that 

the best planes tend to be strictly horizontal or vertical (table 

surfaces, desk tops, and doors). 

Lastly, we only examined the task of finding planes given a 

single image, but in a mobile robot application it would be 

possible to make use of information from multiple, adjacent 

video frames when attempting plane classification. 
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Fig. 9  Example results. (a) shows the original mono image, (b) the 

original depth map, (c) the process and labeled output, (d) the hand-

labeled ground truth, and (e) a composite image showing the points 

for each final plane as well as their normal vectors.  
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Fig. 10  Another set of example results with the same image 

arrangement as given in Figure 9. Here the scene contains more 

clutter and is a more open shot. 
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