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Motivation: Signal Transduction Networks: The study of Signal Transduction 

Networks is one of the major subjects of interest in Systems Biology. Signal 

Transduction pathways are means of regulating numerous cellular functions in response 

to changes in the cell's chemical or physical environment. Signal transduction often 

involves a sequence of biochemical reactions inside the cell, which are carried out by 

proteins. The network of interacting proteins and phosphates relay information as well as 

amplifying them. Their interaction is by activation or inhibition of the next molecule in 

the chain. There are usually more than one pathways functioning as well as interacting in 

a cell at the same moment. The target proteins that can be gene regulatory proteins, ion 

channels, or components of a metabolic pathway have important affect on the cell 

behavior.  

In this project we try to show how Bayesian network learning methods are helpful in 

inferring the causal interactions between the molecules. To study the signal transduction 

network one needs to have a way of measuring proteins involved in the process and  

should also have a way to silence or force each of them or groups of them to a specific 

value in order to produce intervention data that is necessary to distinguish correlation 

from causality. Although Microarray technology has had a lot of progress and people are 

able to measure the expression of all the human genes in parallel, measuring the proteins 

that are active in cell is still a very challenging task. Current technology is capable of 

measuring only a few (around 20) proteins simultaneously in a single cell. Therefore it is 

of great value to develop methods that can extract the information about the structure of 

network as much as possible from the partially observed variables. This fact motivated 

me to work especially in learning the Bayesian network in presence of missing data.  

The data I have used to test my algorithms is from flow cytometry experiments (FACS). 

In FACS experiments they put fluorescent markers inside the cells that bind to proteins 

floating around inside. Then they put them inside a tiny tube with a fluid flowing through 

it that causes the cells to pass one by one through a number of lasers that can detect the 

quantity of proteins with markers bound to them, giving one an idea of the amount of 

each protein in the cell. What the scientists have done is to apply a number of activators 

and inhibitors to cell samples and then checking 11 different proteins in this manner. 

Each experiment has between 650 and 1000 cells in it and there were 9 different 

experiments. This data is published in [1]. 

 

Bayesian Networks: Bayesian networks are useful models in representing and learning 

complex stochastic relationships between interacting variables and their probabilistic 

nature is capable of modeling the noise that is inherent in biological data. A Bayesian 

network is a DAG consisted of two parts: 1.The structure or the directed edges that 

encode the causal relations and conditional independencies between the variables. 2. The 

local parameters or the distribution function and parameters that encode the distribution 

of a child value given its parents (CPDs). Bayesian networks can include continuous and 

discrete variables as vertices [2]. In this project I have focused on the discrete value case. 

One of the most challenging tasks relating to Bayesian Networks is to infer the graph 

structure from experimental data. Finding the most probable structure is a NP-hard 

http://en.wikipedia.org/wiki/Biochemistry
http://en.wikipedia.org/wiki/Chemical_reaction
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problem in the complete data case. In-complete data imposes both foundational problems 

as well as computational complexities in the already challenging task of structure 

learning. We assume that the data is missing at random (MAR assumption) to simplify 

the missing data likelihood function.  In this case the likelihood function is composed of 

different likelihood functions each for one completion of the missing values. We have an 

exponential number of completing these values and in the worst case each of them will 

contribute a different mode to the overall likelihood. 
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As a result we lose the unimodality of the likelihood function, the closed form 

representation and its decomposition to product of parameter likelihoods. [3] 

That is why we try to convert the missing data problem to a complete data problem first 

by guessing the missing values using the observed variables.  

The most referenced algorithm for structure learning with missing data is the structural 

EM (SEM) proposed by Nir Friedman. In SEM we start with a random structure and its 

parameters. We run parametric EM on it to impute the missing values and update its 

parameters. Then we use this completed data to score the next possible graphs that can be 

reached with local changes to the current graph and for each of the candidates we use the 

ML parameter assignment. After several updates to the structure we run EM again to re-

calculate the missing values. One problem with SEM apart from its slow convergence is 

its stickiness. Since we update the graph based on one possible imputation of the data it 

can easily get trapped in local minima. One might try different initializations and multiple 

restarts but it becomes intractable when we have a large number of missing variables. 

Also the greedy search in the graph space is not the best one can do especially as the 

number of graph vertices grows. We try to develop an algorithm that finds the best 

possible structures based on multiple completions of the data to escape local minima. 

Also unless one has a huge number of completed data cases it is impossible to learn a one 

best scoring graph that is why we will infer a data base of probable graphs in each 

iteration and use all of them to infer the missing values. So I will discuss the algorithm in 

two steps: 1. learning the probable graphs given the multiple versions of the complete 

data. 2. Imputing the missing values given the graph data base. 

 

Learning the Probable Graphs: Learning is usually done by scoring the candidate 

graphs. Different scoring metrics have been developed such as BIC, ML and Bayesian 

score. These different metrics all prefer the more probable graphs given the data and 

usually penalize the more complex graph to avoid overfitting.  

I used Bayesian Score in the implementation: 
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The likelihood integral in (1) has a closed form if we choose the parameters distribution 

from the exponential family with conjugate priors. Since we are using discrete variables 

we choose the multinomial distribution with Dirichlet priors: 
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We use the BDe metric for the alpha parameters to have score-equivalence. The Nijk’s in 

(2) are sufficient statistics that can be calculated by going through all the data cases and 

counting the number of times node i has value k while its parents are in the state j.   

The space of possible graphs is a super exponential function of number of variables in the 

network hence the exhaustive search in this space is computationally intractable if we 

have more than say 5 variables. You can see the growth of the search space by number of 

variables in Table 1.  

Therefore people usually use heuristic 

search methods to explore the space.  

Markov Chain Monte Carlo is a general 

optimization method that performs a 

random walk in the space of networks 

and by applying Metropolis Hastings 

theorem will ultimately converge to the 

posterior probability, i.e. in the mixed 

MCMC chain each network will be 

sampled with the frequency proportionate to 

its probability.  

Using Metropolis-Hastings rule we accept  

the proposed graph G’ with Probability A(G->G’) 
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probability.  But instead of running MCMC in the graph space we decided to use the 

order space. By order we mean a topological order of the variables of a graph such that 

each node is placed after its parents. It has been shown by Cooper et al that finding the 

probable graphs is no longer NP-hard if we know the correct ordering of the nodes [5]. 

But finding the correct ordering is still a difficult task unless one has enough domain 

knowledge. So we score the orders in a similar way we score graphs and try to find the 

more probable orders given the data. The MCMC in the order space has been studied by 

Friedman et al in [4]. Using MCMC in the order space rather than the graph space has 

several advantages: 1. The order space is a much smaller space and hence easier to 

explore 
)log(2 nno
 vs. 

)(
2

2 nΩ
. 2. We can have more efficient local moves such as 

swapping the place of two nodes. 3. The transition probabilities need to be calculated in 

the graph space based on all the possible DAGs that can be reached by applying the local 

change operators to the current and proposed graphs but one can assume the transition 

probabilities to be equal in the order space and avoid the expensive acyclicity checks 4. 
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We can use the domain knowledge on ordering of the variables to define priors on the 

orders.  

Using the Dynamic Programming technique we can compute the order score efficiently 

[4]:  

 

(4) 

 

 

To compute this score efficiently one can make a database of pre-computed local scores 

indexed by the parent set for each node [6]. In this data base we will list the score of all 

possible families for the nodes. In order to score a particular order we only accumulate 

the entries that have a compatible parent set.  And finally we multiply the nodes total 

scores to have the order score. In case of missing data and having multiple imputations 

we can score the order given each of the completed data bases separately and then take 

the average of these scores as the final order score. 

As the number of graph vertices grows it gets intractable to list all possible parent sets for 

nodes. That is why people usually limit the nodes in-degree by k: a small number like 3 

or 4 as the data-base grows polynomially with the k. In order to have a more informative 

way to list the parent sets and also allow some larger parent sets for some nodes of the 

graph I used the regression tree idea. We can use the regression tree modeling technique 

to find the most informative nodes for each node and list all subsets of those nodes as a 

possible parent set. I ran the regression tree algorithm using the stop criteria of having 

less than 30 data points assigned to each node trying to minimize the error 

2* )(∑ ∑
∈ ∈

−=
leavesc Ci

i yyE  where ∑
=

=
c

i

iy
c

y
1

* 1
in a greedy way for a data base of 5400 data 

cases in the network studied in Sachs et al paper [1]. You can see the results in Table 2 

that shows regression tree has captured most of the relevant parents for each node in the 

network in figure 1. The numbers in the table indicate at what depth of the tree the nodes 

branch out and the lower numbers indicate more informative nodes. This is not the 

perfect method to find the parent set as it does not capture the causal relations but can be 

useful along with the naïve way of listing all possible size k parent sets. 

To help mixing of the MCMC chain I used a more complex MCMC method called 

parallel-tempering. In parallel tempering we have several MCMC chains each running at 

a different “Temperature”. The higher Temperature chains accept the “bad-moves” easier 

and hence explore the space faster. Each chain can get a proposed sample from its 

neighbor chain and accept that using the Metropolis-Hastings rules. I implemented the 

parallel tempering algorithm for a simple 5 node network for which I generated 

observational and perturbation data. I used the Cooper-Yoo[7] method for calculating the 

scores in case of perturbation.  And I was able to capture the high scoring orders. 

Graph Sampler: In the second stage of the algorithm assuming we have captured the 

high scoring orders we will sample graphs by sampling the parents of each node based on 

the pre-computed scores given these orders.  
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The orders do not partition the graph space and each graph is compatible with different 

number of orders. This will introduce bias in the graph sampling process [6].  To solve 

this problem we will maintain a database of the unique graphs that cover most of the 

probability space of the high probable orders. We will sample graphs from each order and 

store them in the data base until we cover 95% probability of that order and then we will 

go to the next order but we will not restore the repeating graphs. This way we will end up 

with a data base of probable graphs that can be used in the next step of the algorithm that 

is the missing data imputation. 

Missing Data Imputation: We will use Gibbs sampling method to infer the missing 

values.  In Gibbs sampling we iteratively fix the values of all data cases instead of one 

data case. We use the fixed data cases to learn the parameters of the graph and then we 

use the partial observed case to run Bayesian network message passing algorithm [8] and 

complete that partially observer data case. Since we are having a data base of graphs 

instead of one graph we need to run Gibbs Sampler in all of them and infer the missing 

data using the probability that is the average probability of all the graphs. Then we pick 

another case and re-assign its values and we repeat this until convergence. We will run 

the Gibbs sampler multiple times on the data to have multiple imputations and will use all 

of those to compute an average score in the order scoring phase in the MCMC order 

sampler. Figure 2 shows the steps of the algorithm.  

 

 

 

 

 

 

 

 

 

 

 
                                 

 

 

 

 

 

 

 

 

 

 

Table 2 : List of Candidate 

Parent Sets 

 

Figure 1: Network of 11 proteins in T-cell 
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Figure 2: Algorithm Steps 
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