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1 Introduction

Recent work has been done by Rajat Raina and other researchers at Stanford
in applying sparse coding techniques to various classification problems. In
this project we follow that tradition by applying sparse coding to the problem
of classifying fMRI images. In particular, we try to classify fMRI images
based on what the subject was doing when the fMRI image was obtained.
The two classification possibilities we consider are whether the subject was
looking at a sentence or looking at a picture.

Rajat Raina provided direction and advise on sparse coding techniques,
as well as a code base for sparse coding and classification. We acknowledge
him and thank him for his help.

1.1 FMRI images

FMRI (Functional Magnetic Resonance Imaging), is a method of using mag-
netic resonance imaging to measure the change in blood flow and oxygena-
tion of blood in the brain. FMRI data is typically noisy and very high-
dimensional. It is also difficult to obtain large amounts of data from single
subjects. FMRI data must be pre-processed in a fairly significant way so
that the resulting data is usable.

For our project, we started with the data obtained in the Star/Plus fMRI
project at Carnegie Mellon. This data has already been preprocessed and
arranged in a manner that makes dealing with it more practical. Each patient
has 1280 ”snapshots”. Half of those snapshots the patient is looking at
a sentence, and the other half the patient is looking at an image. Each
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Figure 1: Sample fMRI images

snapshot contains eight two-dimensional images, each of which is a cross
section or ”slice” at a certain depth in the brain.

1.2 Sparse coding

Sparse coding is a technique for representing information that has been pos-
tulated to occur in the V1 portion of the visual cortex. Sparse coding al-
gorithms learn bases that can be linearly combined to reconstruct the input
data. Sparse coding algorithms specifically try to come up with a set of bases
that will allow for accurate reconstruction of the input with as few images
as possible.

Given input images x(i), the sparse coding algorithm finds activations a(i)

and bases b to minimize equation ??.

min
b,a

∑
i

||x(i) −
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j

a
(i)
j bj||22 + β||a||1 (1)

Our hope in applying sparse coding to fMRI data is to be able to identify
regions in the brain that have correlated activity, much like ROIs (Regions of
Interest) used in typical fMRI data analysis. ROIs must be hand-identified
by someone with neuroscience knowledge, who can analyze the brain and
designate the regions of interest as defined by specific anatomical landmarks.
Through sparse coding, our hope was to achieve comparable performance
without brain-specific knowledge.

2 Experiment

Originally we wanted to be able to train bases and a classifier that worked
across multiple subjects. Our goal was to be able to train on data from a
group of subjects, and then test on a new subject’s data. However the shape
and size of the brain varied substantially between subjects. We realized that
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in order to make this work we had to somehow normalize the fMRI data
across subjects.

We decided to translate and scale each fMRI slice to a standard size
of 32x32 pixels. This helped to line up the slices so that the brain size
and shape across patients had more congruency. However upon calculating
bases and training classifiers with this normalized data, we discovered that
this data normalization was not sufficient to be able to compare data across
subjects effectively. After doing more research into how this issue is dealt
with in past studies, we found that this is actually a significant problem
in machine learning of fMRI data. The most common solution is to use
manually labeled regions of interest and then compare those regions across
subjects. We decided that for the scope of this project we would stick with
single subject bases and classifiers. This in itself is a hard problem, and one
that has not been perfected as yet. We felt that this was still a significant
topic to tackle, and one that could perhaps be improved upon by sparse
coding techniques.

Once we decided to work to classify within a single subject, we tried
several test runs of the whole process on one subject, with variations in the
sparse coding and PCA parameters. We varied things like the PCA reduction
dimension, the β value, or sparseness penalty, in the sparse coding algorithm,
the number of bases learned, and the size of the test and training sets. From
the results of these varied experiments on a single subject we decided to
proceed with experiments involving the rest of the subjects, reducing our
data to 400 dimension through PCA, using a β value of 1, and using 90%
of the data as training data and 10% as test. We then proceeded to run the
code with this setup on two other subjects. We present the results in the
next section.

3 Results

Most of the subjects data contained about 5000 voxels. Using PCA, we
reduced this data to 400 dimensional data. This reduction usually preserved
between 60% and 70% of the total variance of the original data. Figure ??
shows an original fMRI image and then that same image reduced to 400
dimensions and then converted back to its original dimensionality. This is
what we used to give us a feel for how the different PCA reduced dimension
sizes were doing at preserving the original data.

3



Figure 2: Comparison of original fMRI image (left) with PCA-reduced image

3.1 Sparse coding results

The sparse coding algorithm learned 50 bases for each of our subjects. The
sparsity penalty β was 1, and this gave us average activation activities around
7%, meaning each fMRI image was reconstructed using only about 7% of the
bases. With 50 bases learned, this means that on average we were using
between 3 and 4 bases to reconstruct a given image. An example of a recon-
struction that used only 2 bases is shown in figure ??.

= 0.1624∗ +0.0641∗

Figure 3: Reconstruction of fMRI image from bases 11 and 46

3.2 Classification results

We ran our code on the fMRI data of 3 subjects, and trained GDA classifiers
on 90% of the data and tested on the other 10%. As a baseline for compar-
ison we also trained classifiers on the raw voxel information after the PCA
dimension reduction. This is shown in the table under raw features. The
results of these experiments are shown in table ??.

4 Conclusions and future work

Results of our various experiments were varied and inconsistent. Some in-
dicated that sparse coding had a significant impact on the accuracy of clas-
sification of fMRI images, while others showed that sparse coding struggled
to compete with use of raw voxel information to classify the images. Our
conclusions are that more work needs to be done determining just how much
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Table 1: Classification accuracies for GDA classifiers trained using raw and
sparse features

Training size Raw features Sparse features
Subject 4847

100 0.727 0.711
200 0.742 0.727
500 0.773 0.766

1152 0.859 0.766
Subject 4820

100 0.570 0.570
200 0.617 0.672
500 0.672 0.703

1152 0.789 0.672
Subject 5710

100 0.656 0.578
200 0.703 0.578
500 0.688 0.594

1152 0.852 0.562

sparse coding can impact fMRI classification. The amount of time necessary
to complete a cycle of bases learning and classification limited the number of
experiment we were able to complete. As it was, we completed a fair number
of experiments, but almost always with different parameters involved.

In the future, we would like to continue with a more comprehensive eval-
uation of some of the techniques we have used in this project. Specifically,
it would be very helpful to use some form of cross-validation to evaluate
the classifiers results on this data set. We plan also to vary the number
of bases we learn, and see what effect this has on classification ability. We
also would like to investigate the effectiveness of sparse coding as applied
to time-sequences of fMRI images, as opposed to single time snapshots, as
we attempted in this project. Bases learned on time-sequences might give
us more robust classification possibilities and might contain new information
about the relationships of different areas of the brain. We plan also to use
sparse coding to help classify fMRI images or sequences into more categories
than just two. This would be necessary in the Pittsburgh Brain Activity
Interpretation Competition (www.ebc.pitt.edu), which would also provide a
lot of data and opportunity to determine the effectiveness of a sparse coding
approach. We are optimistic about the possibilities of sparse coding in the
future of fMRI interpretation.
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