
Machine Learning of Expressive Microtiming in Brazilian and Reggae Drumming
Matt Wright (Music) and Edgar Berdahl (EE), CS229, 16 December 2005

Abstract
We have used supervised machine learning to apply
microtiming to music specified only in terms of
exact, quantized, theoretical note times. Specifically,
the input consists of a sort of musical score: note data
specifying the quantized attack times for a variety of
percussion instruments. The output of the regression
schemes we tried is simply the microtiming deviation
to apply to each note. In particular, we trained
Locally Weighted Linear Regression / K-Nearest-
Neighbors (LWLR/KNN), Kernel Ridge Regression
(KRR), and Gaussian Process Regression (GPR) on
data from skilled human performance of a variety of
reggae drum parts and Brazilian rhythms. Evaluating
our results with cross-validation, we found that the
three methods are quite comparable, and in all cases
the mean squared error is substantially less than the
mean squared microtiming of the original data.
Subjectively, our results are satisfactory; the applied
microtiming captures some element of musical style
and sounds much more expressive than the quantized
input.

Introduction
Most styles of music are based on a theoretical model
of rhythm in which the timing of notes is specified in
terms of exact integer divisions of the beat. In real
performance by skilled human musicians, a large part
of the expression comes from microtiming, small but
meaningful variations in the exact timing of notes to
produce “feel,” “groove,” or “swing.” Computer-
generated realizations using perfectly-timed notes
lack microtiming and are generally characterized as
“mechanical,” “dry,” “inhuman,” etc.

We applied supervised machine learning to the
problem of generating stylistically appropriate
microtiming for notes specified only in terms of
theoretical exact times, i.e., notes whose onset times
are exactly submultiples of the beat and that therefore
have zero microtiming. In particular, our algorithm’s
input is the MIDI score of a series of drum notes, and
the output is the microtiming to apply to each note.
MIDI is a symbolic representation that (for our
purposes) represents music by specifying timing,
loudness, and timbre (i.e., which drum) for each note.

A musician can manipulate other parameters of a
performance in order to influence its expressiveness,
including tempo, dynamics, and articulation.
Currently we address only microtiming: tempo is
constant for our training data (because it is almost
constant in these musical styles); dynamics and
articulation we leave for future work.

Related Work
Most of the related work pertains to synthesizing
expressive concert piano music. The oldest line of
research of which we are aware began in 1983 at the
Royal Institute of Technology (KTH) in Stockholm,
where Johan Sundberg and others determined rules
that should govern the expressive parameters of
music[4]. They used an iterative process by inventing
rules, asking professional musicians to comment on
the musical output of the algorithms governed by the
rules, then manually fine-tuning the rules. The rules
were therefore limited by the imaginations of the
researchers, and the parameters for the rules were
approximated using a limited number of listening
tests. Nevertheless, many of the rules were able to
predict performance parameters in tests on actual
performance data from Mozart sonatas provided by
Gerhard Widmer [5]. However, some rules
systematically failed on certain musical phrases,
leading to the conjecture that such rules should
incorporate knowledge of the phrase structure of a
piece, at least for the domain of concert piano.

In contast, Gerhard Widmer sought to use
machine learning to automatically “discover” the
rules governing expressive concert piano music
performance, and to have these rules expressible in
simple English. In his first attempt, he applied
nearest-neighbor methods, Bayesian classifiers,
decision tables, decision trees, and classification rules
to the melodies of thirteen sonatas by Mozart,
concluding that decision trees and classification rules
performed best [7]. He considered only the
discretized and therefore drastically simplified
classification problem, i.e., predicting whether a
given note would be played early or late, with
resulting accuracies in the neighborhood of 60%. He
further determined that different models were needed
for different meters and tempi and that rhythmic
structure was more closely tied to tempo deviations,
while melodic structure had more influence on the
dynamics.

Widmer later became interested in the idea of
“partial models,” which he desired to explain some
characteristics of expressive performance without
causing overfitting due to the learning algorithms
attempting to explain every training sample. As a
result, Widmer developed the PLCG (“partition,
learn, cluster, and generalize”) algorithm, based on a
sequential set covering algorithm [2] and some
generalization heuristics. Many of the resulting

expressive music performance rules coincided with
musicological theory [8].

Next Widmer added some higher-level features to
further aid his learning algorithms. However, the
features were so high-level that they required a
manual and somewhat subjective musical analysis of
the training data by music experts. The phrase
information was deemed the most important aspect of
these features. In particular, each note was considered
to belong to phrases of similarly behaving notes on
both smaller and larger timescales. In essence, the
learning algorithms were using human input to help
cluster perceptually related notes together [6].

The hierarchical nature of the new features
allowed Widmer to experiment with some more
exotic inductive learning algorithms such as the
relational case-based learner DISTALL. It used a
distance measure which when applied to two phrases,
not only measured the dissimilarity between the two
phrases A and B, but also measured the dissimilarity
between the phrases related to A and B, where the
relatedness between phrases was determined using
the high-level phrase analysis features [6].

While this method indeed shows promise, it has
some weaknesses because of which we have decided
not to implement it. In particular, Widmer states that
he has had better results with the dynamics than the
timing and tempo, whereas we are most interested in
the timing. In addition, Widmer makes some
assumptions about how the local dynamics and tempo
of each phrase contribute to the overall dynamics and
tempo. That is, he assumes that they are additive and
makes no musicological argument for why this
should be the case. He further chooses to
parameterize the local dynamics and tempo curves
using second-order polynomials, and this decision
seems motivated more computationally than
musicologically. Finally, Widmer even admits that
the largest source of error in the model was the fitting
of quadratic functions to the dynamics and tempo
curves [9].

Training Data
We have purchased collections of MIDI sequences of
drum parts for Reggae and Brazilian music genres
from KEYFAX NewMedia. Expert percussionists in
each genre recorded these sequences in real-time via
MIDI-equipped acoustic drum sets and similar input
devices. In general each consists of about 16 bars of
a basic rhythm with minor variations, played on the
full battery of instruments. Subjectively, these
sequences “sound authentic”: their microtiming
variations are enough to give a sense of each musical
style. We manually selected sequences that were long
enough (at least 8 bars), sounded “authentic” to us,

and had some degree of interesting microtiming,
resulting in the following collection of training data:
Rhythm # notes # insts Mean|MT| Std(MT)
Escola 1189 10 0.0282 0.0346
Olodum 1079 13 0.0261 0.0248
Sambareg 904 10 0.0181 0.0235
Rokbahia 522 5 0.0168 0.0217
Maracana 1043 8 0.0345 0.0378
Partalto 739 10 0.0219 0.0255
Sambafnk 960 11 0.0375 0.0315
Afoxe 556 7 0.0187 0.0229
Baiao 1020 9 0.0240 0.0307
Reggae 897 22 0.0188 0.0248
Lvr-rock 895 17 0.0043 0.0102
Ska 382 6 0.0216 0.0293

Table 1: Input data by rhythm, showing number of
notes and instruments, and mean absolute value and

variance of microtiming (MT, measured in beats)

Since the input to our machine learning algorithm
is the unexpressive, “perfectly” timed version of a
rhythm, we had to quantize these expressively timed
sequences. In some respects this is analogous to
transcribing a rhythm in written notation, because it
involves making subjective categorical judgments
about the rhythmic “meaning” of each note according
to the presumed underlying metrical structure. That
is to say, though the quantization process itself is
purely mechanical and deterministic, the choice of
which level of subdivision to quantize to involves
human subjectivity.

Quantization actually turned out to be much more
difficult than we anticipated, because many of the
parts had some notes at the 32nd-note level, yet many
of the notes that we considered to be 16th notes have
such large microtiming (i.e., they were played so
early or so late) that they were assigned to the wrong
beat when quantized to a 32nd-note grid. We solved
this problem with a heuristic hybrid quantization
algorithm that quantizes each note to both the 16th-
note and 32nd-note grids, preferring the 16th-note
result unless multiple notes from the same timbre
“collide” by being quantized to the same 16th note, in
which case the algorithm then uses the 32nd-note
quantization. In other words, this heuristic makes the
strong modeling assumption that all notes at the 32nd-
note level are part of an adjacent pair of 32nd notes,
not part of a syncopation.

Distance Metric
All of the learning algorithms we tried, with the

exception of GPR, are based directly on some notion
of distance between a given input note and each note
in the training data. Our goal in devising the distance
metric was to account for the factors that we believed
determine how a given note will be microtimed:

timbre, position in the rhythmic cycle, and the
presence of other notes nearby in time. Our distance
metric has three components:
• Timbral distance is zero between two notes

on the same timbre (e.g., snare drum), one
between notes of totally different timbres
(e.g., crash cymbal vs. bass drum) and a
subjective ad hoc number between zero and
one for instruments that sound similar
and/or have similar rhythmic functions.

• Metric position distance is zero between
two notes at the same point in a bar (e.g.,
both notes on the 16th note after beat two),
small for notes in positions that perform
similar rhythmic functions (e.g., the 8th note
after beat one vs. the 8th note after beat
three), and one for notes at rhythmically
dissimilar positions.

• Rhythmic context difference captures the
effect on microtiming of notes played
shortly before or after the given note on the
same or different timbres. Our current
implementation looks at the timbres and
relative temporal position of all notes
within one beat of the input notes, although
we could certainly extend this window if it
proves helpful.

Our current distance metric is nonnegative and
symmetric, but the triangle equality does not
necessarily hold.

K–Nearest–Neighbors / Locally Weighted Linear
Regression
The simplest algorithm we tried outputs a linear
combination of the microtimings for the k training
notes “nearest” to the given test note, weighted
weighted (inversely) by distance. For example, we
compute the weight w(i,j) corresponding to the
distance between the notes i and j as follows.

When k equals the size of the training set, K-Nearest-
Neighbors (KNN) is equivalent to Locally Weighted
Linear Regression (LWLR); this was never the
optimal value of k.

We selected k and τ to minimize the mean
squared error (MSE) over all our data with 5-fold
cross-validation, resulting in k=26 and τ= 2 4 .
Selecting k and τ to minimize the MSE for each
rhythm results in only a very small decrease in test
error, so we believe the k and τ parameters to be
global.

Kernel Ridge Regression
We realized that KNN was not using knowledge of
the actual microtimings in deciding which training set
elements to use for prediction, so we applied Kernel
Ridge Regression (KRR) to try to improve the
performance. This formulation of a general
regression problem using kernels was very useful for
us because it allowed us to directly apply our distance
metric, which was motivated by our intuition into this
particular problem.

While our distance measure is nonnegative and
symmetric, the triangle equality does not necessarily
hold. Furthermore, our distance measure is not a
Mercer kernel, and so the matrix K of pair-wise
distances w(i,j) is not positive semidefinite in general.
Therefore, to ensure that we were able to backsolve
the necessary set of linear equations, we needed to
pick the magnitude of the ridge term λ to be at least
slightly larger than the smallest eigenvalue of K. We
used cross-validation to determine the optimal values
for λ and τ, which suggested that λ should be chosen
as small as possible. Luckily, the smallest possible λ
was always a few orders of magnitude smaller than
the large eigenvalues of K.

Figure 1 shows part of the results from cross-
validation for the rhythm Escola. For a given note
index, a positive stem means that a note was (blue) or
is estimated to be (red) played late, whereas a
negative stem corresponds to an early note relative to
the score. Despite the difficult nature of the
regression problem, KRR is able to make reasonable
estimates of many of the microtimings. A stem plot
of the results from KNN also looks similar.

Figure 1: Comparison of the true microtimings
versus those predicted by KRR

KRR sometimes performed slightly better than KNN
and sometimes slightly worse (see Fig. 2). Perhaps
the suboptimal performance was related to the fact
that our distance metric was not strictly speaking a
kernel. However, we could certainly improve the
performance of both KNN and KRR by refining our
distance metric as a few of the weights currently used
in the metric were chosen by making educated
guesses. However, searching this space would be
very time-consuming because we would have to use
cross-validation, and we might not gain much insight
into the problem through this approach.

Gaussian Processes Regression
The typical formulation of Gaussian Process
Regression (GPR) is similar to KRR but it allows
automatic fine-tuning of the weights involved in
estimating distances [3]. We found this aspect of
GPR attractive, and so we maximized the log-
likelihood with respect to these weights, often called
hyperparameters, using a conjugate gradient descent
method1.

The main challenge lay in reformulating our
distance metric in terms of a Euclidean distance
between feature vectors. This was particularly
difficult because the easiest way of defining a
distance metric (as we did above) is as a function of
two notes and their respective contexts in the score,
but any feature vector representation needs each note
to be translated into an element in a vector. We thus
required feature vectors containing several hundred
elements in order to incorporate all of the aspects of
our distance metric. We formulated our feature
vectors for the ith note as follows.

• The first five elements described the ith note’s
onset time within the measure. We chose
these descriptions such that the distances
between rhythmically similar positions in the
measure would be small compared with
distances between other positions in the
measure.

• The sixth element describes the “timbral
height” of the ith note. That is, timbres with
more energy at lower frequencies are
assigned smaller timbral heights than timbres
with more energy at higher frequencies.

• The seventh element describes the amplitude
with which the ith note should be played. In
MIDI terminology this is the velocity of the
note.

1 MATLAB code released by Carl Rasmussen (2005),
http://www.kyb.tuebingen.mpg.de/bs/people/carl/cod
e/

• The remaining 595 elements consist of a
locally-windowed representation of an
exploded representation of the score. The
explosion results from forming the cross
product of the 35 possible timbres versus the
possible note locations in a window
surrounding the ith note. Currently we use a
window consisting of a beat before and a beat
after the ith note. Since we are using a 32nd-
note level quantization, there are 17 such
positions.

However, we found that given the amount of data we
had quantized (see Table 1), we could estimate on the
order of only 10 to 20 hyperparameters robustly.
Thus, we needed a way to reduce the dimensionality
of the score component of the feature vectors. This
step was further required due to the computational
intensiveness of the conjugate gradient descent
method.

Dimensionality Reduction
Principal Components Analysis (PCA) made for a
good starting point for this step because of the sparse
nature of the feature vectors. In fact, some of the
dimensions of the exploded score were completely
unnecessary for particular rhythms. For example,
rhythms not containing a particular timbre needed to
have the corresponding columns in the feature
vectors removed, and the preprocessing inherent in
implementing PCA could perform this function
automatically.

Some work had already been carried out in this
area. A paper by Ellis and Arroyo outlines a method
for analyzing popular music using what they term
“eigenrhythms” and “indirhythms” [1]. They make
many genre-specific assumptions that we cannot
make, and so we have had to carry out some
additional steps to achieve a reasonable singular
value spread. These steps require intuition into the
important patterns in the data. For example, we found
that we needed to apply a rotation of the feature
vectors that re-aligns every two beats in a bar with
the edges of feature vector. This leads to significantly
larger correlations in the data due to the periodic
characteristics of rhythms that are not genre-specific.

Thus, we used PCA to project the 595 exploded
score dimensions down to six. Even though this
projection only preserved only about 9% of the
variance, it allowed us to apply GPR successfully
while using some information from the score.
Including the other seven features to which we did
not apply PCA, we thus used GPR to estimate
thirteen hyperparameters. Judging by the resulting
MSE, the GPR method performed approximately as
well as KNN and KRR.

However, we believe that GPR has much more
room for improvement. We would like to experiment
with a number of additional pre-PCA rotations of the
exploded score data, and we also have not yet used
cross-validation to find the optimal number of PCA
dimensions. In addition, there may be better ways of
reducing the dimension of the exploded score that
result in eigenvectors more relevant to the regression
task. Along these lines, we have carried out some
preliminary experiments with independent
components analysis (ICA). In particular, we applied
ICA to the five components output by PCA. ICA
tended to result in more-differentiated components
than those generated by PCA. This differentiation is
important due to the assumption that the covariance
matrix is diagonal.

Results and Future Applications
The performance of all four methods, measured

by the MSE on 5-fold cross-validation, is strikingly
similar (see Fig. 2). Some rhythms appear more
difficult to microtime using our algorithms, but this
variation in the MSE is correlated with the variation
in the actual microtiming variance of the rhythms
themselves. That is to say, some rhythms simply have
more microtiming than others. All of our algorithms
perform significantly better than applying no
microtiming at all, in an MSE sense. In addition, they
are also better in a perceptual sense. According to our
preliminary and informal listening tests, a machine-
microtimed score sounds much more human and less
mechanical than a completely regular, quantized
score. We of course also made comparisons with
randomly microtimed scores where the standard
deviation of the random noise applied was the same
as that of the actual microtimings applied by a
musician. These “random” examples did not sound
realistic at all because they were not microtimed
consistently.

In the future, besides refining the working details of
the GPR implementation to improve the MSE, we
plan to work on applying this machine microtiming
method. One intriguing application is cross-synthesis,
where the microtiming deviations from one rhythm
are applied to another quantized score.

References
[1] D. P. W. Ellis and J. Arroyo, Eigenrhythms:

Drum pattern basis sets for classification and
generation, Int. Symp. on Music Info. Retr.
ISMIR-04, Barcelona, 2004.

[2] J. Fürnkranz, Separate-and-Conquer Rule
Learning, Artificial Intelligence Review, 13
(1999), pp. 3–54.

[3] C. E. Rasmussen, Evaluation of Gaussian
Processes and other Methods for Non-Linear
Regression, PhD Thesis, Dept. Computer
Science, University of Toronto, 1996.

[4] J. Sundberg, A. Askenfelt and L. Frydén, Musical
performance. A synthesis-by-rule approach,
Computer Music Journal, 7 (1983), pp. 37–43.

[5] J. Sundberg, A. Friberg and R. Bresin, Attempts
to Reproduce a Pianist's Expressive Timing with
Director Musices Performance Rules, Journal of
New Music Research, 32 (2003), pp. 317-325.

[6] A. Tobudic and G. Widmer, Case-based
Relational Learning of Expressive Phrasing in
Classical Music, Advances in Case-Based
Reasoning. 7th European Conference, ECCBR
2004, Madrid, Spain, 2004, pp. 419-33.

[7] G. Widmer, Large-scale Induction of Expressive
Performance Rules: First Quantitative Results,
International Computer Music Conference,
Berlin, Germany, 2000.

[8] G. Widmer, Machine discoveries: A few simple,
robust local expression principles, J. New Music
Res., 31 (2002), pp. 37–50.

[9] G. Widmer and W. Goebl, Computational
Models of Expressive Music Performance: The
State of the Art, Journal of New Music Research,
33 (2004), pp. 203–216.

