
The SILK Language

December 22, 2009

This version:
$Id: SILK.tex 1241 2009-12-22 23:28:58Z mdean $

Editor:
Mike Dean (BBN Technologies)

Authors:
Mike Dean (BBN Technologies)
Benjamin Grosof (Vulcan Inc.)
Michael Kifer (State University of New York at Stony Brook)

Copyright c©2005, 2008, 2009 retained by the authors. All Rights Reserved.

Issue 0.1: Copyright needs to be resolved, as long as significant portions
are excerpted from SWSL. We may consider publishing this document under an
open source license. �

Abstract

SILK (Semantic Inferencing for Large Knowledge) is an advanced
knowledge representation language combining the latest work in the-
ory, non-monotonic reasoning, business rules, and the Semantic Web.
It is designed to be sufficiently expressive and scalable to support
large challenges including Project Halo. This evolving document is
the authoritative reference on the features, syntax, and semantics of
SILK.

Status of this document

This is an Editor’s Draft of a document being prepared for Vulcan
Inc. It represents work in progress and is still rather raw and incom-
plete. A significant update is expected in Fall 2009. Please do not
redistribute without permission of Benjamin Grosof at Vulcan.

Feedback on this document may be sent to silk-comments@semwebcentral.org.

mailto:silk-comments@semwebcentral.org

Contents

1 Introduction 5
1.1 Acknowledgments . 5
1.2 Typography . 6

2 The SILK Language 6
2.1 Overview of SILK . 6
2.2 Basic Definitions . 8
2.3 Horn Rules . 11
2.4 Queries . 12

2.4.1 Persistent Queries . 12
2.5 The Monotonic Lloyd-Topor Layer 12
2.6 The NAF Layer . 14
2.7 The Nonmonotonic Lloyd-Topor Layer 15
2.8 The Courteous Layer . 18

2.8.1 Rule Labels . 18
2.8.2 Classical Negation . 19
2.8.3 Prioritization Predicate 19
2.8.4 Exclusion . 20
2.8.5 Cancellation . 21
2.8.6 Omni-directional rule sets 21

2.9 The Production Layer . 21
2.9.1 Procedural Attachments 21

2.10 The HiLog Layer . 23
2.11 The Equality Layer . 24
2.12 The Frames Layer . 25
2.13 Reification . 33
2.14 Skolemization . 35
2.15 Aggregation . 37
2.16 SILK and XML Schema Data Types 38
2.17 Overview of the Semantics of SILK 38
2.18 SILK Predicates . 39

2.18.1 Querying External Data Sources 39
2.18.2 Built-ins . 41
2.18.3 External Actions . 41
2.18.4 Logging . 41
2.18.5 List of All SILK Predicates 42

2.19 SILK Grammars . 42
2.19.1 SILK Human-Readable Grammar 43
2.19.2 Restrictions for SILK Layers 45
2.19.3 SILK LL(k) Grammar . 45
2.19.4 SILK Meta Model . 47
2.19.5 SILK Java API . 50

2.20 SILK Conventions . 51
2.20.1 SILK Media Type . 51

2

2.21 Additional Features for SILK . 51

3 SILK FOL 55
3.1 Overview of SILK FOL . 55
3.2 SILK FOL Syntax . 56
3.3 Overview of the Semantics of SILK FOL 58
3.4 Hypermonotonic Mapping: Combining SILK and SILK FOL . . 58
3.5 Parsing SILK FOL . 62
3.6 Additional Features for SILK FOL 63

References 66

3

Editor’s Note 0.1: We should probably include a basic glossary of terms such
as atom, axiom, body, constant, fact, formula, ground, head, literal, method,
molecule, path expression, predicate, query, rule, rulebase, statement, term,
variable, etc. The SWSL Glossary is not useful in this regard. We may also be
able to consolidate some terms. �

Editor’s Note 0.2: We can also create an index in LaTeX. �

4

http://www.w3.org/Submission/2005/SUBM-SWSF-SWSL-20050909/#sec-glossary

1 Introduction

Semantic Inferencing with Large Knowledge (SILK) is an advanced knowledge
representation language being developed as part of the Halo Advanced Research
(HalAR) component of Vulcan Inc.’s Project Halo [Hal].

SILK includes a novel combination of features that hitherto have not been
present in a single system. However, taken separately, almost all of the features
of SILK have been implemented in either FLORA-2 [YKWZ08], SweetRules
[GDG+], or the commercial Ontobroker [Ont] system. Extensive feedback col-
lected from the users of these systems has been incorporated in the design of
SILK.

SILK is a rule-based language with non-monotonic semantics. Such lan-
guages are better suited for tasks that have programming flavor and that nat-
urally rely on default information and inheritance. These tasks include service
discovery, contracting, policy specification, and others. In addition, rule-based
languages are quite common both in industry and research, and many people
are more comfortable using them even for tasks that may not require defaults,
such as service profile specification.

1.0.0.1 The layered structure of SILK. The features of SILK can be
organized into several different layers. Unlike OWL, the layers are not based
on the expressive power and computational complexity. Instead, each layer
includes a number of new concepts that enhance the modeling power of the
language. This is done in order to make it easier to learn the language and to
help understand the relationship between the different features. Furthermore,
most layers that extend the core of SILK are independent from each other —
they can be implemented all at once or in any partial combination.

1.0.0.2 Complexity. Except for the equality layer, which boosts the com-
plexity, all layers have the same complexity and decidability properties. For
SILK, the most important reasoning task is query answering. The general prob-
lem of query answering is known to be only semi-decidable. However, there are
large classes of problems that are decidable in polynomial time. The best-known,
and perhaps the most useful, subclass consists of rules that do not use function
symbols. However, many decidable classes of rules with function symbols are
also known [NS97].

1.1 Acknowledgments

SILK was derived from the Semantic Web Services Language [BBB+05]. The
contributions of the Semantic Web Services Initiative Language Committee are
gratefully acknowledged.

We received very helpful comments and corrections from other members of
the HalAR team, including Paul Haley and Ken Murray.

5

1.2 Typography

This document distinguishes several types of sections that may be of varying
interest to different audiences:

• Example: Contains a SILK language fragment.

• Editor’s Note: Identifies an outstanding editorial issue.

• Issue: Identifies an outstanding design issue.

• Rationale: Discusses why certain design decisions were made.

• Semantics: Provides a formal description of a SILK language feature.

Editor’s Note 1.1: MK: We probably don’t need a special environment for
the semantics. At least, not for the cases when the whole section is dedicated
to the semantics. �

Editor’s Note 1.2: The current macros renumber these items when new
items are inserted. This is likely to be a problem at least for issue tracking. �

Editor’s Note 1.3: We want to distinguish firm vs. “squishy” (underspecified
or at risk) parts of the specification, and be able to easily generate the firm
subset. This could involve reorganizing the document as well as additional
markup. �

2 The SILK Language

This section describes the SILK language, including its features, syntax, and
semantics.

Editor’s Note 2.1: Consider dividing this section into multiple sections.
�

Editor’s Note 2.2: Adapt and incorporate examples from sources such as
the FLORA-2 tutorial and possibly Ontoprise’s F-Logic Tutorial. �

2.1 Overview of SILK

The SILK language is designed to provide support for a variety of tasks that
range from service profile specification to service discovery, contracting, policy
specification, and so on. The language is layered to make it easier to learn and
to simplify the use of its various parts for specialized tasks that do not require
the full expressive power of SILK. The layers of SILK are shown in Figure 1.

6

http://flora.sourceforge.net/tutorial.php
http://www.ontoprise.de/fileadmin/user_upload/Publications_EN/Tutorial_FLogic_en.pdf

Figure 1: The Layered Structure of SILK

The core of the language consists of the pure Horn subset of SILK. The
monotonic Lloyd-Topor (Mon LT) extension [Llo87] of the core permits dis-
junctions in the rule body and conjunction and implication in the rule head.
NAF is an extension that allows negation in the rule body, which is interpreted
as negation-as-failure. More specifically, negation is interpreted using the so
called well-founded semantics [VRS91]. The nonmonotonic Lloyd-Topor exten-
sion (Nonmon LT) further permits quantifiers and implication in the rule body.
The Courteous rules [Gro99, WGK+09] extension introduces two new features:
restricted classical negation and prioritized rules. HiLog and Frames extend the
language with a different kind of ideas. HiLog [CKW93] enables a high degree of
meta-programming by allowing variables to range over predicate symbols, func-
tion symbols, and even formulas. Despite these second-order features, the se-
mantics of HiLog remains first-order and tractable. It has been argued [CKW93]
that this semantics is more appropriate for many common tasks in knowledge
representation than the classical second-order semantics. The Frames layer of
SILK introduces the most common object-oriented features, such as the frame
syntax, types, and inheritance. The syntax and semantics of this extension is
inspired by F-logic [KLW95], and subsequent works [FLU94, YK03a, YK03b].
Finally, the Reification layer provides a mechanism for making objects out of
a large class of SILK formulas, which puts such formulas into the domain of
discourse and allows reasoning about them.

All of the above layers have been implemented in one system or another
and have been found highly valuable in knowledge representation. For instance,
FLORA-2 [YKWZ08] includes all layers except Courteous rules and Nonmono-

7

tonic Lloyd-Topor. SweetRules [GDG+] supports Courteous extensions, and
Ontobroker [Ont] supports Nonmonotonic Lloyd-Topor and frames.

Four points should be noted about the layering structure of SILK.

1. The lines in Figure 1 represent inclusion dependencies among layers. For
instance, the Nonmonotonic LT layer includes both NAF and Monotonic
LT. Reification includes HiLog and Frames, Courteous includes NAF, etc.

2. The different branches of Figure 1 are orthogonal and they all can be com-
bined. For instance, the Frames and HiLog layers can be combined with
the Courteous and Nonmon LT layers. Likewise, the equality layer can
be combined with any other layer. Thus, SILK is a unified language that
combines all the layers into a coherent and powerful knowledge represen-
tation language. Its semantics will be described in a separate document.
The semantics of the individual layers has been described in other pub-
lications and an overview of the overall semantics is provided in Section
2.17.

3. The Lloyd-Topor extensions and the Courteous rules extensions endow
SILK with all the normal first-order connectives. Therefore, syntactically
SILK contains all the connectives of full first-order logic. However, se-
mantically SILK is incompatible with first-order logic. Their semantics
agree only on a relatively small, but useful, subset of Horn rules.

4. Because of its non-monotonic flavor, SILK distinguishes between connec-
tives with the classical first-order semantics and connectives that have non-
monotonic semantics. For instance, it uses two different forms of negation
— naf, for negation-as-failure, and neg, for classical negation. Likewise,
it distinguishes between the classical implication, <== and ==>, and the
if-then connective :-used for rules.

2.2 Basic Definitions

In this section we define the basic syntactic components that are common to all
layers of SILK. Additional syntax will be added as more layers are introduced.

SILK employs basic syntactic constructs from the W3C Rule Interchange
Format (RIF) syntactic framework [BK08]. RIF supports XML data types,
IRIs, etc., in a general way.

Issue 2.1: Compare SILK constants to those in the RIF Last Call Working
Drafts. �

A constant is either a numeric value, a symbol, a string, or a URI.

• A numeric value is either an integer, a decimal, or a floating point
number. For instance, 123, 34.9, 45e-11. See Section 2.16 for more
details on the relationship between SILK data types and the primitive
data types in XML Schema [BM04].

8

• A symbol is a string of characters enclosed between a pair of single quotes.
For instance, ’abc#$%’. Single quotes that are part of a symbol are es-
caped with the backslash. For instance, the symbol a’bc’’d is represented
as ’a’’bc\’\’d’. The backslash is escaped with another backslash. Sym-
bols that consist exclusively of alphanumeric characters and the underscore
() and begin with a letter or an underscore do not need to be quoted.

• Strings are sequences of characters that are enclosed between a pair of
double quote symbols, e.g., "ab’%#cd". A double quote symbol that oc-
curs in a string must be escaped with the backslash. For instance, the
string ab"cd"""gf is represented as "ab\"cd\"\"\"gf".

• A Uniform Resource Identifier (URI) can come either in the form of a full
URI or in the abbreviated form of a compact URI (CURIE).

A full URI is a sequence of characters that has the form of a URI, as
specified by IETF [BLFM05], and is enclosed between angle brackets. For
instance, <http://w3.org/>.

Issue 2.2: The use of the <...> notation is problematic, since we want
to also use <,> for infix comparison operators. �

A CURIE [BM08] has the form prefix :local-name. Here prefix is an
alphanumeric symbol that is defined to be a shortcut for a URI as specified
below; local-name is a string that must be acceptable as a path component
in a URI. A CURIE is treated as a macro that expands into a full URI by
concatenating the expansion of prefix (the URI represented by the prefix)
with local-name.

Issue 2.3: CURIEs are actually based on IRIs [DG05] rather than URIs. We
should consider using IRIs throughout SILK, as RIF does. �

A prefix declaration is a statement of the form

:- prefix prefix-name = <URI > ;

The prefix can then be used instead of the URI in CURIEs. For instance, if we
define

:- prefix w3 = <http://www.w3.org/TR/> ;

then the SILK URI <http://www.w3.org/TR/xquery> is considered to be the
same as w3:xquery. Prefix declarations are treated as nothing more than macros
and macro-expansion is expected to be done prior to any syntactic or semantic
considerations (such as considering whether two SILK expressions are identical).

The following prefixes are pre-defined by SILK and do not need to be de-
clared (but may be overriden by an explicit prefix declaration):

:- prefix silk = <http://vulcan.com/2008/silk#> ;

:- prefix silkb = <http://vulcan.com/2008/silk-builtins#> ;

9

:- prefix rdf = <http://www.w3.org/1999/02/22-rdf-syntax-ns#> ;

:- prefix rdfs = <http://www.w3.org/2000/01/rdf-schema#> ;

:- prefix owl = <http://www.w3.org/2002/07/owl#> ;

:- prefix xsd = <http://www.w3.org/2001/XMLSchema#> ;

A variable is an alphanumeric symbol (plus the underscore), which is pre-
fixed with the ?-sign. Examples: ? , ?abc23.

A first-order term is either a constant, a variable, or an expression of
the form t(t1,...,tn), where t is a constant, t1,...,tn are first-order terms,
and n > 0. Here the constant t is said to be used as a function symbol (or
a functor) and t1,...,tn are used as arguments. Variable-free terms are
also called ground. The set of all ground terms is known as the Herbrand
universe.

Following Prolog, we also introduce special notation for lists: [t1,...,tn]

and [t1,...,tn | rest], where t1,...,tn and rest are first-order terms. The
first form shows all the elements of the list explicitly and the latter shows ex-
plicitly only a prefix of the list and uses the first-order term rest to represent
the tail. We should note that, like in Prolog, this is just a convenient short-
hand notation. Lists are nothing but first-order terms that are representable
with function symbols. For instance, if cons denotes a function symbol that
prepends a term to the head of a list then [a,b,c] is represented as the first-
order term cons(a,cons(b,c)).

A first-order atomic formula has the same form as a first-order term
except that a variable cannot be a first-order atomic formula. We do not distin-
guish predicates as a separate class of constants, as this is usually not necessary,
since first-order atomic formulas can be distinguished from first-order terms by
the context in which they appear.

As many other rule-based languages, SILK has a special unification oper-
ator, denoted =. The unification operator is always interpreted as an identity
relation over the Herbrand universe. Therefore, a formula of the form

term1 = term2

where both terms are ground, is true if and only if the two terms are identical.
Since the semantics of the unification operator is fixed and is the same for all
rulebases, it cannot appear in the head of a rule.

The = predicate is related to the equality predicate, :=:, which is introduced
by the Equality Layer, Section 2.11.

To test that two terms cannot be identical (do not unify), SILK uses the
disunification operator !=. It is interpreted as the negation of = so, for ground
terms, term1 != term2 iff the two terms are not identical.

Terms can also be connected by infix arithmetic (+, -, *, and /) and com-
parison (<, <=, >=, and >) operators.

A conjunctive formula is either an atomic formula or a formula of the
form

atomic formula and conjunctive formula

10

where and is a conjunctive connective. Here and henceforth in similar defi-
nitions, italicized words will be meta-symbols that denote classes of syntactic
entities. For instance, atomic formula above means “any atomic formula.” An
and/or-formula is either a conjunctive formula or a formula of either of the
forms

conjunctive-formula or and/or-formula and/or-formula and and/or-formula

In other words, an and/or formula is an arbitrary Boolean combination of atomic
formulas using the connectives and and or.

To disambiguate the scope of connectives in and/or formulas, the user should
use parentheses. When parentheses are not given, SILK assumes that and takes
precedence over or.

Comments. SILK has two kinds of comments: single line comments and
multiline comments. The syntax is the same as in Java. A single-line com-
ment is any text that starts with a // and continues to the end of the current
line. If // starts within a string ("...") or a symbol (’...’) then these char-
acters are considered to be part of the string or the symbol, and in this case
they do not start a comment. A multiline comment begins with /* and ends
with a matching */. The combination /* does not start a comment if it appears
inside a string or a symbol.

Issue 2.4: It is even more important to have structured comments that are
captured in the rule representation and accessible to other tools. Consider use
of a Javadoc-like syntax and/or RIF-like annotations.

MK: compare to RIF annotations. �

2.3 Horn Rules

A Horn rule has the form

head :- body ;

where head is an atomic formula and body is a conjunctive formula.
Rules can be recursive, i.e., the predicate in the head of a rule can occur

(with the same arity) in the body of the rule; or they can be mutually recursive,
i.e., a head predicate can depend on itself through a sequence of rules.

All variables in a rule are considered implicitly quantified with forall out-
side of the rule, i.e., forall ?X,?Y,...(head :- body). A variable that oc-
curs in the body of a rule but not its head can be equivalently considered as
being implicitly existentially quantified in the body. For instance,

forall ?X,?Y (p(?X) :- q(?X,?Y)) ;

is equivalent to

forall ?X (p(?X) :- exist ?Y (q(?X,?Y))) ;

11

http://java.sun.com/j2se/javadoc/

Semantics: The semantics of a set of Horn rules can be characterized in
several different ways: through the regular first-order entailment, as a minimal
model (which in this case happens to be the intersection of all Herbrand models
of the rule set) and as a least fixpoint of the immediate consequence operator
corresponding to the rule set [Llo87]. �

2.4 Queries

A query has the form

?- query ;

where query is syntactically equivalent to a rule body. A query returns a result
set, which is a set of binding lists. Each binding includes a variable and a typed
value.

SILK also supports queries of external data sources (Section 2.18.1) and
aggregation (Section 2.15).

2.4.1 Persistent Queries

SILK also supports persistent queries that incrementally return new results
as they become available.

A persistent query is defined as an instance of silk:PersistentQuery with
members query and optionally action, both of which are strings containing
SILK statements. action is executed with variable bindings from query. If no
action is specfied, query and its variable bindings are printed to stdout.

Example 2.1:

query1 # silk:PersistentQuery[query->"?- ?person # Person[name->?name] ;",

action->"silkb:writeLn(?name)"] ;

�

2.5 The Monotonic Lloyd-Topor Layer

This layer extends the syntax of the Horn layer with three kinds of syntactic
sugar:

1. Disjunction in the body of the rule

2. Conjunction in the head of the rule

3. Classical implication

A classical implication is a statement of either of the following forms:

formula1 ==> formula2

formula1 <== formula2

12

The Lloyd-Topor implication (LT implication) is a special case of the
classical implication where the formula in the head is a conjunction of atomic
formulas and the formula in the body can contain both conjunctions and dis-
junctions of atomic formulas.

If classical implication holds in both directions between two formulas, their
logical equivalence can be expressed in a single statement using classical bi-
implication of the following form:

formula1 <==> formula2

The Lloyd-Topor bi-implication (LT bi-implication) is a special case of the
classical bi-implication where both formulas are conjunctions of atomic formulas.

The monotonic LT layer extends Horn rules in the following way. A rule still
has the form

head :- body ;

but head can now be a conjunction of atomic formulas and/or LT implications
(including bi-implications) and body can consist of atomic formulas combined
in arbitrary ways using the and and or connectives.

Semantics: The monotonic LT extensions are strictly syntactic: the semantics
of rules using these extensions remains strictly classical first-order since they are
transformed to rules that do not contain the monotonic LT extensions. Under
the classical first-order semantics, these transformations are known to preserve
equivalence, and this fact motivates their use in logic programming and SILK.
�

The monotonic Lloyd-Topor transformations are listed below.

• head :- body1 or body2 reduces to

head :- body1 ;
head :- body2 ;

• head1 and head2 :- body reduces to

head1 :- body ;

head2 :- body ;

• (head1 <== head2) :- body reduces to

head1 :- head2 and body ;

• (head1 ==> head2) :- body reduces to

head2 :- head1 and body ;

Complex formulas in the head are broken down using the last three reductions.
Rule bodies that contain both disjunctions and conjunctions are first converted

13

into disjunctive normal form and then are broken down using the first reduction
rule.

Issue 2.5: Can SILK also allow if-and-only-if rules of the form head <==>

body as syntactic sugar for the 2 corresponding rules? �

2.6 The NAF Layer

The NAF layer adds the negation-as-failure symbol, naf, in the rule body. For
instance,

p(?X,?Y) :- q(?X,?Z) and naf r(?Z,?Y) ;

p(?X,?Y) :- q(?X,?Z) and naf (s(?Z,?Y) or q(?Y)) ;

More precisely, if ϕ is a subformula that is allowed to appear in the rule
body, then naf(ϕ) is also an allowed subformula in the rule body. When ϕ is
an atomic formula then no parentheses are required.

Semantics: In SILK we adopt the well-founded semantics [VRS91] as a
way to interpret negation as failure. This semantics has good computational
properties when no first-order terms of arity greater than 0 are involved, and
the well-founded model is always defined and is unique. This model is three-
valued, so some facts may have the “unknown” truth value. �

We should note one important convention regarding the treatment of vari-
ables that occur under the scope of naf and that do not occur anywhere outside
of naf in the same rule. The well-founded semantics was defined only for ground
atoms and the interpretation of unbound variables was left open. Therefore, if
?X does not occur elsewhere in the rule then the meaning of

... :- ... and naf r(?X) and ...

can be informally defined as either

... :- ... and exist ?X (naf r(?X)) and ...

(i.e., naf r(?X) is true if naf r(t) is true for some ground term t) or as:

... :- ... and forall ?X (naf r(?X)) and ...

where naf r(?X) is true if naf r(t) is true for all ground terms t. In practice,
the second interpretation is preferred, and this is also a convention used in SILK.

Issue 2.6: MK: this is a very error-prone convention in practice (turned out
to be a poor decision in FLORA-2–also because it does not support explicit
quantifiers). We should require explicit naf exists here and give an error of
an unbound variable is encountered during evaluation. �

14

2.7 The Nonmonotonic Lloyd-Topor Layer

This layer introduces explicit bounded quantifiers (both exist and forall),
classical implication symbols, <== and ==>, and the bi-implication symbol <==>
in the rule body. This essentially permits arbitrary first-order-looking formulas
in the body of SILK. We say “first-order-looking” because it should be kept in
mind that the semantics of SILK is not first-order and, for example, classical
implication A <== B is interpreted in a non-classical way: as (A or naf B)

rather than (A or neg B) (where neg denotes classical negation).
Recall that without explicit quantification, all variables in a rule are consid-

ered implicitly quantified with forall outside of the rule, i.e., forall ?X,?Y,...

(head :- body). A variable that occurs in the body of a rule but not its head
can be equivalently considered as being implicitly existentially quantified in the
body. For instance,

forall ?X,?Y (p(?X) :- q(?X,?Y)) ;

is equivalent to

forall ?X (p(?X) :- exist ?Y (q(?X,?Y))) ;

In the scope of the naf operator, unbound variables have a different interpreta-
tion under negation as failure. For instance, if ?X is bound and ?Y is unbound
then

p(?X) :- naf q(?X,?Y) ;

means

forall ?X (p(?X) :- naf exist ?Y (q(?X,?Y))) ;

If we allow explicit universal quantification in the rule bodies then implicit
existential quantification is not enough and an explicit existential quantifier is
needed. This is because forall and exist do not commute and so, for example,
forall ?X (exist ?Y ...) and exist ?Y (forall ?X ...) mean different
things. If only implicit existential quantification were available, it would not be
possible to differentiate between these two forms.

Formally, the Nonmonotonic Lloyd-Topor layer permits the following kinds
of rules. The rule heads are the same as in the monotonic LT extension. The
rule bodies are defined as follows.

• Any atomic formula is a legal rule body

• If f and g are legal rule bodies then so are

– f and g

– f or g

– naf f

– f ==> g

15

– f <== g

– f <==> g

• If f is a legal rule body then so is

– exist ?X1,...,?Xn(f)

where ?X1, ..., ?Xn are variables that occur positively (defined below) in f.

• If g1, g2 are legal rule bodies then

– forall ?X1,...,?Xn(g1 ==> g2)

– forall ?X1,...,?Xn(g2 <== g1)

are legal rule bodies provided that ?X1, ..., ?Xn occur positively in g1

Positive occurrence of a variable in a formula is defined as follows:

• Any variable occurs positively in an atomic formula

• A variable occurs positively in f and g iff it occurs positively in either f
or g.

• A variable occurs positively in f or g iff it occurs positively in both f and
g.

• A variable occurs positively in f ==> g iff it occurs positively in g.

• A variable occurs positively in f <== g iff it occurs positively in f.

• A variable occurs positively in f <==> g iff it occurs positively in both f
and g.

• A variable occurs positively in exist ?X1,...,?Xn(f)

or forall ?X1,...,?Xn(f) iff it occurs positively in f.

Editor’s Note 2.3: Need rationale here. �

Issue 2.7: Explicit use of universal and, especially, mixed quantifiers is very
error-prone. We might change this syntax to replace forall with the subset
operator or something like that. �

Semantics: The semantics of Lloyd-Topor extensions is defined via a trans-
formation into the NAF layer as shown below. As with monotonic Lloyd-Topor
transformations, the nonmonotonic transformations are inspired by the fact that
they are known to preserve equivalence under the classical first-order semantics
(if naf is interpreted as classical negation). Further discussion of these trans-
formations can be found in [Llo87]. �

16

2.7.0.1 Lloyd-Topor transformations. These transformations are designed
to eliminate the extended forms that may occur in the bodies of the rules and
reduce the rules to the NAF layer. These extended forms involve the various
types of implication and the explicit quantifiers. Note that the rules, below,
must be applied top-down, that is, to the conjuncts that appear directly in the
rule body. For instance, if the rule body looks like

... :- ... and

((forall ?X (exist ?Y (foo(?Y,?Y) ==> bar(?X,?Z))))

<== foobar(?Z))

and ...

then one should first apply the rule for <==, then the rules for forall should
be applied to the result, and finally the rules for exist and ==>.

• Let the rule be of the form

head :- body1 and (f ==> g) and body 2 ;

Then the LT transformation replaces it with the following pair of rules:

head :- body1 and naf f and body2 ;

head :- body1 and g and body2 ;

The transformations for <== and <==> are similar.

• Let the rule be

head :- body 1 and forall ?X1,...,?Xn(g1 ==> g2) and body2

;

where ?X1,...,?Xn are free variables that occur positively in g1.

The LT transformation replaces this rule with the following pair of rules,
where q(?X’1,...,?X’n) is a new predicate of arity n and ?X’1,...,?X’n

are new variables:

head :- body 1 and naf q(?X’1,...,?X’n) and body2 ;

q(?X1,...,?Xn) :- g1 and naf g2 ;

The transformation for <== is similar.

• Let the rule be

head :- body1 and exist ?X1,...,?Xn(f) and body2 ;

where ?X1,...,?Xn are free variables that occur positively in f .

The LT transformation replaces this rule with the following:

head :- body1 and f ’ and body2 ;

17

where f ’ is f with the variables ?X1,...,?Xn consistently renamed into
new variables. That is, explicit existential quantification can be replaced
in this case with implicit quantification.

The above transformations reflect the difference between naf and neg in the clas-
sical tautologies (f ==> g) <==> (neg f or g) and forall ?X (f) <==>

neg exist neg ?X (f) including that naf p(?X) is interpreted as forall ?X

(naf p(?X)) when ?X does not occur elsewhere in the formula, as discussed in
Section 2.6.

Editor’s Note 2.4: The neg exist neg example above does not seem to be
syntactically valid. �

2.8 The Courteous Layer

The courteous layer introduces prioritized conflict handling. Four new features
are introduced into the syntax:

• classical negation of atomic formulas;

• a prioritization predicate, which may be used to specify that some rules
take precedence over other rules in the event of conflict;;

• rule labels, which declare terms used to reference rules within the prior-
itization predicate;

• exclusions, which specify the scope of what constitutes conflict.

The theory behind the courteous logic programs is described in [Gro99, WGK+09].
The courteous layer builds upon the NAF layer of SILK, described in Section
2.6.

2.8.1 Rule Labels

Each rule has an optional label, which is used for specifying prioritization in
conjunction with the prioritization predicate (below). The syntactic form of a
rule label is a term enclosed by a pair of braces: {...}. Thus, a labeled rule
has the following form:

{label} head :- body ;

A label is a term, which may have variables. If so, these variables are interpreted
as having the same scope as the implicitly quantified variables appearing in the
rule expression. E.g., in the rule

{specialoffer(?X)} pricediscount(?X,10) :- loyalcustomer(?X) ;

the label specialoffer(?X) names the instance of the rule corresponding to
the instance ?X. However, the label term may not itself be a variable, so the
following is illegal syntax:

18

{?X} pricediscount(?X,10) :- loyalcustomer(?X) ;

In general, labels are not unique; two or more rules (or instances of rules) may
have the same label. However, sometimes it may be necessary to have unique
rule labels.

Issue 2.8: MK: {label} may be hard to distinguish and parse, especially if
we extend the syntax to constraints, aggregates, etc., which also use braces. I
propose @{label}. Moreover, we should expand this so that other annotations
(meta-info) could be specified inside @{...} after the label. �

2.8.2 Classical Negation

The classical negation connective, neg, may appear within the head and/or the
body of a rule. Its scope is restricted to be an atomic formula, however. For
example:

neg boy(?X) :- humanchild(?X) and neg male(?X) ;

{t14(?X,?Y)} p(?X,?Y) :- q(?X,?Y) and naf neg r(?X,?Y) ;

However, the following example is illegal syntax because neg negates a non-
atomic formula.

u(?X) :- t(?X) and neg naf s(?X) ;

2.8.3 Prioritization Predicate

The prioritization predicate silk:overrides specifies precedence between rule
labels, and thus between the rules labeled by those rule labels. The name of
the prioritization predicate is syntactically reserved such that its name cannot
be used for any other predicate.

A statement silk:overrides(label1,label2) indicates that the first ar-
gument, label1, has higher priority than the second argument, label2. For
example, consider the following:

{rep} neg pacifist(?X) :- republican(?X) ;

{qua} pacifist(?X) :- quaker(?X) ;

{pri1} silk:overrides(rep,qua) ;

Here, the prioritization atom silk:overrides(rep,qua) specifies that rep has
higher priority than qua. Continuing this example, suppose the following facts
are also given:

{fac1} republican(nixon) ;

{fac2} quaker(nixon) ;

Then, under the courteous semantics, the literal neg pacifist(nixon) is
entailed as a conclusion, and the literal pacifist(nixon) is not entailed as a

19

conclusion, because the rule labeled rep takes precedence over the rule labeled
qua.

Editor’s Note 2.5: This is the only section that discusses literals. Can we
substitute term? �

The prioritization predicate silk:overrides, while its name is syntactically
reserved, is otherwise an ordinary predicate — it can appear freely in rules in
the head and/or body. This may be useful for reasoning about the prioritization
ordering.

Editor’s Note 2.6: Cornsilk uses 2 user-level prioritization predicates,
overrides/2 and overrides/4, which map to an underlying predicate. �

2.8.4 Exclusion

Rationale: This section formerly referred to mutexes for mutual exclusion,
but has subseqently been generalized to work with k-ary exclusions. �

Editor’s Note 2.7: Incorporate or replace with recent work on k-ary mutexes
/ exclusions. Presumably this includes Cornsilk’s opposes. �

The scope of what constitutes conflict is specified by mutual exclusion (mu-
tex) statements, which are part of the rulebase and can be viewed as a kind
of integrity constraint. Each such statement says that it is contradictory for
a particular pair of literals (known as the “opposers”) to be inferred, if an op-
tional condition (known as the “given”) holds true. The courteous LP semantics
enforce that the set of sanctioned conclusions respects (i.e., is consistent with)
all the mutexes within the given rulebase. Common uses for mutexes include
specifying that two unary predicates are disjoint, or that a relation is functional;
examples of these uses are given below.

An unconditional mutex has the following syntactic form:

!- lit1 and lit2 ;

where lit1 and lit2 are classical literals. Intuitively, this statement means
that it is a contradiction to derive both lit1 and lit2. For example:

!- pricediscount(?CUST,5) and pricediscount(?CUST,10) ;

says that it is a contradiction to conclude that the discount offered to the same
customer ?CUST is both 5 and 10. As another example,

!- lion(?X) and elephant(?X) ;

specifies that it is a contradiction to conclude that the same individual is both
a lion and an elephant.

A conditional mutex has the following syntactic form:

!- lit1 and lit2 | condition ;

20

Here condition is syntactically similar to a rule body, and lit1 and lit2

are classical literals. The symbol “|” separates the opposing literals from the
condition. For example:

!- pricediscount(?CUST,?Y) and pricediscount(?CUST,?Z) | ?Y!=?Z ;

says that it is a contradiction to conclude that the discount offered to the same
customer, ?CUST, is both ?Y and ?Z if ?Y and ?Z are distinct values. This means
that the relation pricediscount is functional.

Courteous LP also assumes that there is an implicit mutex between each
atom A and its classical negation neg A . This implicit mutex is also known as
a “classical” mutex.

Issue 2.9: Mutexes should be replaced with the more flexible silk:opposes

predicate as is currently in the FLORA-2 prototype. �

2.8.5 Cancellation

Editor’s Note 2.8: Describe the silk:cancel predicate and semantics. Dis-
cuss positive exceptions here or in a separate section. Legislative or regulatory
examples may be appropriate. �

2.8.6 Omni-directional rule sets

See 3.4.

2.9 The Production Layer

Some SILK rules will need to interact with other computing environments to
obtain data, perform calculations, or effect actions. This section describes such
extra-logical features that are commonly found in production rule systems.

2.9.1 Procedural Attachments

External procedures can be invoked as SILK predicates or functions. They are
distinguished from other predicates and functions by the presence of a bind-
ing signature. The binding signature indicates the name, type, and binding
requirement of each argument.

Binding signatures are represented in SILK. An external predicate is de-
clared to be of type silk:ExternalPredicate, which has frame syntax mem-
bers silk:arg, silk:binding, and optionally silk:vararg.

An external function is declared to be of type silk:ExternalFunction and
has the same members as silk:ExternalProcedureplus the additional member
silk:returnValue.

silk:arg takes a silk:Argument, which has the member silk:type. The
name of the instance is the name of the argument.

21

silk:binding takes a (typically skolem) silk:Binding, which has members
silk:in and silk:out, which refer to argument names, and silk:javaClass

(other such implementation members may be added later), which indicates the
Java class that implements the external procedure predicat eor funtion.

The following example shows an external predicate with multiple binding
patterns:

Example 2.2:

swrlb:anyURI # silk:ExternalPredicate[

silk:arg->{

uri[silk:type->xsd:string],

protocol[silk:type->xsd:string],

domain[silk:type->xsd:string],

port[silk:type->xsd:string],

part1[silk:type->xsd:string],

part2[silk:type->xsd:string],

fragment[silk:type->xsd:string]

},

silk:binding -> {anyURIBp1[

silk:in->{protocol,domain,port,part1,part2,fragment},

silk:out->uri,

silk:javaClass->"org.daml.swrl.jena.builtins.uri.AnyURI"

],

anyURIBp2[

silk:in-> uri,

silk:out->{protocol,domain,port,part1,part2,fragment},

silk:javaClass->"org.daml.swrl.jena.builtins.uri.AnyURI"

]}

] ;

�

These classes and predicates are defined in SILK as:

<>[owl:versionInfo->"$Id: bindingpatterns.silk 1117 2009-11-17 19:37:31Z mdean $",

rdfs:comment->"SILK external procedure binding patterns"] ;

silk:AttachedProcedure[silk:arg => silk:Argument,

silk:vararg {0:1} => silk:Argument, // variable argument, at end

silk:binding {1:*} => silk:BindingPattern] ;

silk:ExternalPredicate ## silk:AttachedProcedure ;

silk:ExternalFunction ## silk:AttachedProcedure[silk:returnValue => silk:Argument] ;

silk:Argument[silk:type {1:1} => silk:URI] ; // may be subsumed by named arguments

22

silk:BindingPattern[silk:in => silk:Argument,

silk:out => silk:Argument,

silk:javaClass {0:1} => xsd:string] ; // other implementation members may be added

Issue 2.10: There may be a need for weak/root types used to handle under-
specified objects and/or values. �

External procedures defined by SILK are discussed in section 2.18.

2.10 The HiLog Layer

HiLog [CKW93] extends the first-order syntax with higher-order features. In
particular, it allows variables to range over function symbols, predicate symbols,
and even atomic formulas. These features are useful for supporting reification
and in reasoning about rather than strictly using formulas. HiLog further sup-
ports parameterized predicates, which are useful for generic definitions (illus-
trated below).

• HiLog term (H-term): A HiLog term is either a first-order term or an
expression of the following form: t(t1,...,tn), where t, t1, ..., tn

are HiLog terms.

This definition may seem quite similar to the definition of complex first-order
terms, but, in fact, it defines a vastly larger set of expressions. In first-order
terms, t must be a constant, while in HiLog it can be any HiLog term. In
particular, it can be a variable or even another first-order term. For instance,
the following are legal HiLog terms:

• Regular first-order terms: c, f(a,?X), ?X

• Variables over function symbols: ?X(a,?Y), ?X(a,?Y(?X))

• Parameterized function symbols:
f(?X,a)(b,?X(c)), ?Z(?X,a)(b,?X(?Y)(d)), ?Z(f)(g,a)(p,?X)

Such terms can be useful in knowledge representation and reflexive reasoning.

• HiLog atomic formula : Any HiLog term is also a HiLog atomic for-
mula.

Thus, expressions like ?X(a,?Y(?X)) are atomic formulas and thus can have
truth values (when the variables are instantiated or quantified). Moreover, ?X
is also an atomic formula. Consequently, atomic formulas may be bound to
variables and variables may be evaluated as formulas. For instance, the following
HiLog query

23

?- q(?X) and ?X ;

p(a) ;

q(p(a)) ;

succeeds with the above database such that ?X equals p(a). Another interesting
example of a HiLog rule is

call(?X) :- ?X ;

This can be viewed as a logical definition of the meta-predicate call/1 in Prolog.
Such a definition does not make sense in first-order logic (and is, in fact, illegal),
but it is legal in HiLog and provides the expected semantics for call/1.

We will now illustrate one use of the parameterized predicates of the form
p(...)(...). The example shows a pair of rules that defines the transitive
closure of a binary predicate. Depending on the actual predicate passed in as a
parameter, we can get different transitive closures.

closure(?P)(?X,?Y) :- ?P(?X,?Y) ;

closure(?P)(?X,?Y) :- ?P(?X,?Z) and closure(?P)(?Z,?Y) ;

For instance, for the parent predicate, closure(parent) is defined by the above
rules to be the ancestor relation. As another example, for an edge relation
representing edges in a graph, closure(edge) represents the transitive closure
of the graph.

2.11 The Equality Layer

This layer introduces the full equality predicate, :=:. The equality predi-
cate obeys the usual congruence axioms for equality. In particular, it is tran-
sitive, symmetric, reflexive, and logical entailment is invariant with respect
to the substitution of equals by equals. For instance, if we are told that
bob:=:father(tom) (bob is the same individual as the one denoted by the
term father(tom)) then if p(bob) is known to be true then we should be able
to derive p(father(tom)). If we are also told that bob:=:uncle(mary) is true
then we can derive father(tom):=:uncle(mary).

Equality in a Semantic Web language is important to be able to state that
two different identifiers represent the same resource. For that reason, equality is
part of OWL [DS04]. Although equality drastically increases the computational
complexity, some forms of equality, such as ground equality, can be handled
efficiently in a rule-based language.

The equality predicate :=: is different from the unification operator = in
several respects. First, for variable free terms, term1 = term2 if and only if
the two terms are identical. In contrast, two distinct terms can be equal with
respect to :=:. Since :=: is reflexive, it follows that the relation that is used as
an interpretation of :=: always contains the interpretation of =. Second, the
unification operator = cannot appear in a rule head, while the equality predicate
:=: can. When :=: occurs in the rule head (or as a fact), it is an assertion
(conditioned on the truth value of the rule body) that two terms are equal. For
instance, given the above definitions,

24

p(1,2) ;

p(2,3) ;

f(a,?X):=:g(?Y,b) :- p(?X,?Y) ;

entails the following equalities between distinct terms: f(a,1):=:g(2,b) and
f(a,2):=:g(3,b).

Semantics: Informally, when term1:=:term2 occurs in the body of a rule and
term1, term2 have variables, this predicate is interpreted as a test that variables
can be consistently replaced with ground terms so that term1 and term2 will
become equal with respect to :=: (note: equal, not identical!). For instance, in
the query

q(1) ;

q(2) ;

q(3) ;

?- f(a,?X):=:g(?Y,b) and q(?Y) ;

one answer substitution is ?X/1,?Y/2 and the other is ?X/2,?Y/3. The formal
definition of equality follows the standard outline of [Llo87] and will be given in
a separate document. Section 2.17 provides an overview of the semantics. �

Editor’s Note 2.9: This doen’t reflect the current approach to derived and
derived default equality in the LPDA working draft (the separate document?).
Michael Kifer should update the semantics here and in 2.17. �

2.12 The Frames Layer

The Frames layer introduces object-oriented syntax modeled after F-logic [KLW95]
and its subsequent enhancements [YK03b, YK03a]. The main syntactic addi-
tions of this layer include

• Frame syntax. Frames are called molecules here (following the F-logic
terminology).

• Path expressions.

• Notation for class membership and subclasses.

• Notation for type specification, which is given by signature molecules.

The object-oriented extensions introduced by the Frames layer are orthogonal
to the other layers described so far and can be combined with them within the
SILK language.

As in most object-oriented languages, the three main concepts in the Frames
layer of SILK are objects, classes, and methods. (We are borrowing from the
object-oriented terminology here rather than AI terminology, so we refer to
methods rather than slots.) Any class is also an object, and the same expression
can denote an object or a class represented by this object in different contexts.

25

A method is a function that takes arguments and executes in the context of
a particular object. When invoked, a method returns a result and can possibly
alter the state of the knowledge base. A method that does not take arguments
and does not change the knowledge base is called an attribute. An object is
represented by its object Id, the values of its attributes, and by the definitions
of its methods. Method and attribute names are represented as objects, so one
can reason about them in the same language.

An object Id is syntactically represented by a ground term. Terms that
have variables are viewed as templates for collections of object Ids — one Id per
ground instantiation of all the variables in the term. By term we mean any
expression that can bind a variable. What constitutes a legal term depends on
the layer. In the basic case, by term we mean just a first-order term. If the
Frames layer is combined with HiLog, then terms are meant to be HiLog terms.
Later, when we introduce reification, reification terms will also be considered.

2.12.0.1 Molecules. Molecules play the role of atomic formulas. We first
describe atomic molecules and then introduce complex molecules. Although
both atomic and complex molecules play the role of atomic formulas, complex
molecules are not indivisible. This is why they are called molecules and not
atoms. Molecules come in several different forms:

• Value molecule. If t, m, v are terms then t[m -> v] is a value molecule.

Here t denotes an object, m denotes a method invocation in the scope of
the object t, and v denotes a value that belongs to a set returned by this in-
vocation. We call m “a method invocation” because if m = s(t1,...,tn),
i.e., has arguments, then t[s(t1,...,tn) -> v] is interpreted as an in-
vocation of method s on arguments t1,...,tn in the context of the object
t, which returns a set of values that contains v.

The syntax t[m -> {v1,...,vk}] is also supported; it means that if
m is invoked in the context of the object t then it returns a set that
contains v1,...,vk. Thus, semantically, such a term is equivalent to a
conjunction of t[m -> v1], ..., t[m -> vk], so the expression t[m ->

{v1,...,vk] is just a syntactic sugar.

• Boolean valued molecule. These molecules have the form t[m] where
t and m are terms.

Boolean molecules are useful to specify things like mary[female]. The
same could be alternatively written as mary[female -> true], but this
is less natural.

Issue 2.11: Are true and false special symbols? �

Issue 2.12: Should we also be able to say bill[not female] as a
shorthand for bill[female -> false]? �

26

• Class membership molecule: If t and s are terms then t#s is a mem-
bership molecule.

If t and s are variable free, then such a molecule states that the object
t is a member of class s. If these terms contain variables, then such a
molecule can be viewed as many class membership statements, one per
ground instantiation of the variables.

• Subclass molecule: If t and s are terms then t##s is a subclass molecule.

If t and s are variable free, then such a molecule states that the object t
is a subclass of s. As in the case of class membership molecules, subclass
molecules that have variables can be viewed as statements about many
subclass relationships.

• Signature molecule: If t, m, v are terms then t[m => v] is a signature
molecule.

If t, m, and v are variable-free terms then the informal meaning of the
above signature molecule is that t represents a class, which has a method
invocation m which returns a set of objects of type v (i.e., each object
in the set belongs to class v). If these terms are non-ground then the
signature represents a collection of statements —one statement per ground
instantiation of the terms.

When m itself has arguments, for instance m = s(t1,...,tn), then the
arguments are interpreted as types. Thus, t[s(t1,...,tn) => v] states
that when the n-ary method s is invoked on an object of class t with
arguments that belong to classes t1, ..., tn, the method returns a set of
objects of class v.

• Boolean signature molecules: A Boolean signature molecule has the
form t[m=>]. Its purpose is to provide type information for Boolean val-
ued molecules. Namely, if m=s(t1,...,tn), then when the method s is
invoked on an object of class t, the method arguments must belong to
classes t1, ..., tn.

• Cardinality constraints: Signature molecules can have associated car-
dinality constraints. Such molecules have the form

t[s(t1,...,tn) {min :max} => v]

where min and max are non-negative integers such that min ≤ max. Max
can also be *, which means positive infinity.

Such a signature states not only that the invocation of the method s with
arguments of type t1,...,tn on an object of class t returns objects of
class v, but also that the number of such objects in the result is no less
than min and no more than max.

Semantics: The semantics of constraints in SILK is similar to con-
straints in databases and is unlike the cardinality restrictions in OWL

27

[DS04]. For instance, if a cardinality constraint says that an attribute
should have at least two values and the rulebase derives only one then
the constraint is violated. In contrast, OWL would infer that there is
another, yet unknown, value. Likewise, if a cardinality constraint says
that the number of elements is at most three while the rulebase derives
four unequal elements then the constraint is, again, violated. This should
be compared to the OWL semantics, which will infer that some pair of
derived values in fact consists of equal elements. �

Editor’s Note 2.10: The above semantics are largely duplicative with
the more elaborated semantics given below. �

Signatures and type checking: Signatures are assertions about the expected
types of the method arguments and method results. They typically do not have
a direct effect on the inference (unless signatures appear in rule bodies). The
signature information is optional.

Semantics: The semantics of signatures is defined as follows. First, the
intended model of the knowledge base is computed (which in SILK is taken to
be the well-founded model). Then, if typing needs to be checked, we must verify
that this intended model is well-typed. A well-typed model is one where the
value molecules conform to their signatures. For the precise definition of well-
typed models see [KLW95]. (There can be several different notions of well-typed
models. For instance, one for semi-structured data and another for completely
structured data.) �

A type-checker can be written in SILK using just a few rules. Such a type
checker is a query, which returns “No” if the model is well-typed and a coun-
terexample otherwise. In particular, type-checking has the same complexity as
querying. An example of such a type checker can be found in the FLORA-2
manual [YKWZ08].

Semantics: It is important to be aware of the fact that the semantics of
the cardinality constraints in signature molecules is inspired by database theory
and practice and it is different from the semantics of such constraints in OWL
[DS04]. In SILK, cardinality constraints are restrictions on the intended models
of the knowledge base, but they are not part of the axioms of the knowledge base.
Therefore, the intended models of the knowledge base are determined without
taking the cardinality constraints into account. Intended models that do not sat-
isfy these restrictions are discarded. In contrast, in OWL cardinality constraints
are represented as logical statements in the knowledge base and all models are
computed by taking the constraints into account. Therefore, in OWL it is not
possible to talk about knowledge base updates that violate constraints. For
instance, the following signature married[spouse {1:1} => married] states
that every married person has exactly one spouse. If john:married is true but
there is no information about John’s spouse then OWL will assume that john

has some unknown spouse, while SILK will reject the knowledge base as incon-

28

sistent. If, instead, we know that john[spouse -> mary] and john[spouse

-> sally] then OWL will conclude that mary and sally are the same object,
while SILK will again rule the knowledge base to be inconsistent (because, in
the absence of information to the contrary —for example, if no :=:-statements
have been given — mary and sally will be deemed to be distinct objects). �

2.12.0.2 Inheritance in SILK. Inheritance is an optional feature, which is
expressed by means of the syntactic features described below. In SILK, methods
and attributes can be inheritable and non-inheritable. Non-inheritable meth-
ods/attributes correspond to class methods in Java, while inheritable methods
and attributes correspond to instance methods.

The value- and signature-molecules considered so far involve non-inheritable
attributes and methods. Inheritable methods are defined using the *-> and *=>

arrow types, i.e., t[m *-> v] and t[m *=> v]. For Boolean methods we use
t[*m] and t[m *=>].

Signatures obey the following laws of monotonic inheritance:

• t#s and s[m *=> v] entail t[m => v].

• t##s and s[m *=> v] entails t[m *=> v].

These laws state that type declarations for inheritable methods are inherited to
subclasses in an inheritable form, i.e., they can be further inherited. However,
to the members of a class such declarations are inherited in a non-inheritable
form. Thus, inheritance of signatures is propagated through subclasses, but
stops once it hits class members.

Inheritance of value molecules is more involved. This type of inheritance is
nonmonotonic and it can be overridden if the same method or attribute is
defined for a more specific class. More precisely,

• t#s and s[m *-> v] entail t[m -> v] unless overridden or in conflict.

• t##s and s[m *-> v] entail t[m *-> v] unless overridden or in conflict.

Similarly to signatures, value molecules are inherited to subclasses in the inher-
itable form and to members of the classes in the non-inheritable form. However,
the key difference is the phrase “unless overridden or in conflict.” Intuitively,
this means that if, for example, there is a class w in-between t and s such that
the inheritable method m is defined there then the inheritance from s is blocked
and m should be inherited from w instead. Another situation when inheritance
might be blocked arises due to multiple inheritance conflicts. For instance, if t
is a subclass of both s and u, and if both s and u define the method m, then
inheritance of m does not take place at all (either from s or from u; this policy
can be modified by specifying appropriate rules, however). The precise model-
theoretic semantics of inheritance with overriding is based on an extended form
of the Well-Founded Semantics. Details can be found in [YK03a].

29

Note that signature inheritance is not subject to overriding, so every in-
heritable molecule is inherited to subclasses and class instances. If multiple
molecules are inherited to a class member or a subclass, then all of them are
considered to be true.

Inheritance of Boolean methods is similar to the inheritance of methods and
attributes that return non-Boolean values. Namely,

• t#s and s[m *=>] entail t[m=>].

• t##s and s[m *=>] entails t[m *=>].

• t#s and s[*m] entails t[m] unless overridden.

• t##s and s[*m] entails t[*m] unless overridden.

2.12.0.3 Complex molecules. SILK molecules can be combined into com-
plex molecules in two ways:

• By grouping.

• By nesting.

Grouping applies to molecules that describe the same object. For instance,

t[m1 -> v1] and t[m2 => v2] and t[m3 {6:9} => v3] and t[m4 -> v4]

is, by definition, equivalent to

t[m1 -> v1 and m2 => v2 and m3 {6:9} => v3 and m4 -> v4]

Molecules connected by the or connective can also be combined using the usual
precedence rules:

t[m1 -> v1] and t[m2 => v2] or t[m3 {6:9} => v3] and t[m4 -> v4]

becomes

t[m1 -> v1 and m2 => v2 or m3 {6:9} => v3 and m4 -> v4]

The and connective inside a complex molecule can also be replaced with a
comma, for brevity. For example,

t[m1 -> v1, m2 => v2]

Nesting applies to molecules in the following “chaining” situation, which is a
common idiom in object-oriented databases:

t[m -> v] and v[q -> r]

is by definition equivalent to

t[m -> v[q -> r]]

30

Nesting can also be used to combine membership and subclass molecules with
value and signature molecules in the following situations:

t#s and t[m -> v]

t##s and t[m -> v]

are equivalent to

t[m -> v]#s

t[m -> v]##s

respectively.
Molecules can also be nested inside predicates and terms with a semantics

similar to nesting inside other molecules. For instance, p[a ->c] is considered
to be equivalent to p(a) and a[b ->c]. Deep nesting and, in fact, nesting in
any part of another molecule or predicate is also allowed. Thus, the formulas

p(f(q,a[b -> c]),foo)

a[b -> foo(e[f -> g])]

a[foo(b[c -> d]) -> e]

a[foo[b -> c] -> e]

a[b -> c](q,r)

are considered to be equivalent to

p(f(q,a),foo) and a[b -> c]

a[b -> foo(e)] and e[f -> g]

a[foo(b) -> e] and b[c -> d]

a[foo -> e] and foo[b -> c]

a[b -> c] and a(q,r)

respectively. Note that molecule nesting leads to a completely compositional
syntax, which in our case means that molecules are allowed in any place where
terms are allowed. (Not all of these nestings might look particularly natural,
e.g., a[b ->c](q,r) or p(a[b ->c](?X)), but there is no good reason to reject
these nestings and thus complicate the syntax either.)

Issue 2.13: Nesting molecules inside predicates can sometimes be unintuitive.
We might want to disallow this unless explicitly reified. �

Issue 2.14: Is precedence within nested molecules fully specified? Are there
any problems with reification? �

2.12.0.4 Path expressions. Path expressions are useful shorthands that
are widely used in object-oriented and Web languages. In a logic-based lan-
guage, a path expression sometimes allows writing formulas more concisely by
eliminating multiple nested molecules and explicit variables. SILK defines path
expressions only as replacements for value molecules, since this is where this
shorthand is most useful in practice.

A path expression has the form

31

t.t1.t2.tn

or

t!t1!t2! ... !tn

The former corresponds to non-inheritable molecules and the latter to inherita-
ble ones. In fact, “.” and “!” can be mixed within the same path expression.

A path expression can occur anywhere where a term is allowed to occur.
For instance, a[b -> c.d], a.b.c[e -> d], p(a.b), and X=a.b are all legal
formulas. The semantics of path expressions in the body of a rule and in its
head are similar, but slightly different. This difference is explained next.

In the body of a rule, an occurrence of the first path expression above is
treated as follows. The conjunction

t[t1 -> ?Var1] and ?Var1[t2 -> ?Var2] and

... and ?Varn−1[tn -> ?Varn]

is added to the body and the occurrence of the path expression is replaced with
the variable ?Varn. In this conjunction, the variables ?Var1, ..., ?Varn are new
and are used to represent intermediate values. The second path expression is
treated similarly, except that the conjunction

t[t1 *-> ?Var1] and ?Var1[t2 *-> ?Var2] and

... and ?Varn−1[tn *-> ?Varn]

is used. For instance, mary.father.mother = sally in a rule body is replaced
with

mary[father -> ?F] and ?F[mother -> ?M] and ?M = sally

In the head of a rule, the semantics of path expressions is reduced to the case
of a body occurrence as follows: If a path expression, ρ, occurs in the head of a
rule, it is replaced with a new variable, ?V, and the predicate ?V=ρ is conjoined
to the body of the rule. For instance,

p(a.b) :- body ;

is understood as

p(?V) :- body and ?V=a.b ;

Note that since molecules can appear wherever terms can, path expressions of
the form a.b[c -> d].e.f[g -> h].k are permitted. They are conceptually
similar to XPath [BBC+07] expressions with predicates that control the selection
of intermediate nodes in XML documents. Formally, such a path expression will
be replaced with the variable ?V and will result in the addition of the following
conjunction:

a[b -> ?X[c-> d]] and ?X[e-> ?Y]

and ?Y[f->?Z[g - >h]] and ?Z[k -> ?V]

32

It is instructive to compare SILK path expressions with XPath. SILK path
expressions were originally proposed for F-logic [KLW95] several years before
XPath. The purpose was to extend the familiar notation in object-oriented
programming languages and to adapt it to a logic-based language. It is easy to
see that the “*” idiom of XPath can be captured with the use of a variable. For
instance, b/*/c applied to object e is expressed as e.b.?X.c. The “..” idiom
of XPath is also easy to express. For instance, a/../b/c applied to object d is
expressed as ? [? -> d.a].b.c. On the other hand, there is no counterpart
for the // idiom of XPath. The reason is that this idiom is not well-defined
when there are cycles in the data (for instance, a[b -> a]). However, recursive
descent into the object graph can be defined via recursive rules.

2.13 Reification

The reification layer allows SILK to treat certain kinds of formulas as terms
and therefore to manipulate them, pass them as parameters, and perform various
kinds of reasoning with them. In fact, the HiLog layer already allows certain
formulas to be reified. Indeed, since any HiLog term is also a HiLog atomic
formula, such atomic formulas are already reifiable. However, the reification
layer goes several steps further by supporting reification of an arbitrary rule or
formula that can occur in the rule head or rule body (provided that it does not
contain explicit quantifiers — see below).

Formally, if F is a formula that has the syntactic form of a rule head, a rule
body, or of a rule then F is also considered to be a term. This means that such
a formula can be used wherever a term can occur.

Note that a reified formula represents an objectification of the corresponding
formula. This is useful for specifying ontologies where objects represent theories
that can be true in some worlds, but are not true in the present world (and thus
those theories cannot be asserted in the present world). Examples include the
effects of actions: effects of an action might be true in the world that will result
after the execution of an action, but they are not necessarily true now.

In general, reification of formulas can lead to logical paradoxes [Per85]. The
form of reification used in SILK does not cause paradoxes, but other unpleas-
antries can occur. For instance, the presence of a truth axiom (true(?X) <==>

?X) can render innocent looking rulebases inconsistent. However, as shown in
[YK03b], the form of reification in SILK does not cause paradoxes as long as

• rule heads do not contain classical negation; and

• a rule head cannot be a variable, i.e., as long as the rules of the form ?X

:- body (which are legal in HiLog) are disallowed.

We therefore adopt the above restrictions for all layers of SILK.

Editor’s Note 2.11: Need to rethink the above restrictions. In particular,
neg in the heads should be allowed. �

33

Without special care, reification might introduce syntactic ambiguity, which
arises due to the nesting conventions for molecules. For instance, consider the
following molecule:

a[b -> t]

Suppose that t is a reification of another molecule, c[d -> e]. Since we have
earlier said that any formula suitable to appear in the rule body can also be
viewed as a term, we can expand the above formula into

a[b -> c[d -> e]]

But this is ambiguous, since earlier we defined the above as a commonly used
object-oriented idiom, a syntactic sugar for

a[b -> c] and c[d -> e]

Similarly, if we want to write something like t[b -> c] where t is a reification
of f[g -> h] then we cannot write f[g -> h][b -> c] because this nested
molecule is a syntactic sugar for f[g -> h] and f[b ->c]. To resolve this
ambiguity, we introduce the reification operator, ${...}, whose only role is to
tell the parser that a particular occurrence of a nested molecule is to be treated
as a term that represents a reified formula rather than as syntactic sugar for the
object-oriented idiom.

Note that the explicit reification operator is not required for HiLog predicates
because there is no ambiguity. For instance, we do not need to write ${p(?X)}
below (although it is permitted and is considered the same as p(?X)):

a[b -> p(?X)]

This is because a[b -> p(?X)] does not mean a[b -> p(?X)] and p(?X),
since the sugar is used only for nested molecules. In contrast, explicit reifi-
cation is needed below, if we want to reify p(?X[foo -> bar]):

a[b -> p(?X[foo -> bar])]

Otherwise p(?X[foo -> bar]) would be treated as syntactic sugar for

a[b -> p(?X)] and ?X[foo -> bar]

Therefore, to reify p(?X[foo -> bar]) in the above molecule one must write
this instead:

a[b -> ${p(?X[foo -> bar])}]

Example 2.3: Reification in SILK is very powerful and yet it does not add
to the complexity of the language. The following fragment of a knowledge base
models an agent who believes in the modus ponens rule:

34

john[believes->${p(a)}] ;

john[believes->${p(?X)==>q(?X)}] ;

// modus ponens

john[believes->?A] :-

john[believes->${?B==>?A}] and john[believes->?B] ;

Since the agent believes in p(a) and in the modus ponens rule, it can infer
q(a). Note that in the above we did not need explicit reification of p(a), since
no ambiguity can arise. However, we used the explicit reification anyway, for
clarity. �

Syntactic rules. Currently SILK does not permit explicit quantifiers under
the scope of the reification operator, because the semantics for reification given
in [YK03b, KLP+04] does not cover this case. So not every formula can be
reified. More specifically, the formulas that are allowed under the scope of the
reification operator are:

• The formulas that are allowed in the rule head or quantifier-free formulas
in the rule body.

• Quantifier-free rules.

The implication of these restrictions is that every term that represents a reifi-
cation of a SILK formula has only free variables, which can be bound outside
of the term. Each such term can therefore be viewed as a (possibly infinite) set
of reifications of the ground instances of that formula.

Editor’s Note 2.12: Remove the above restrictions and extend syntax/semantics.
�

Issue 2.15: Can quantified formulas be reified? Some systems we want to
interoperate with support this. �

Issue 2.16: Review how Common Logic handles reification. We want to work
as gracefully as possible with higher-order features. �

2.14 Skolemization

It is often necessary to be able to specify existential information in the head of
a rule or in a fact. Due to the limitations of the logic programming paradigm,
which trades expressive power for execution efficiency, such information cannot
be specified directly. However, existential variables in the rule heads can be
approximated through the technique known as Skolemization [CL73]. The idea
behind Skolemization is that in a formula of the form ∀Y1...Yn ∃X ...(ϕ)

the existential variable X can be removed and replaced everywhere in ϕ with
the function term f(Y1...Yn), where f is a new function symbol that does not
occur anywhere else in the specification.

35

Rationale: For any query, the original rulebase is unsatisfiable if and only if
the transformed rulebase is unsatisfiable [CL73]. This implies that the query
to the original rulebase can be answered if and only if it can be answered when
posed against the Skolemized rulebase. However, from the point of view of log-
ical entailment, the Skolemized rulebase is stronger than the original one, and
this is why we say that Skolemization only approximates existential quantifica-
tion, but is not equivalent to it. �

Skolemization is defined for formulas in prenex normal form, i.e., formulas
where all the quantifiers are collected in a prefix to the formula and apply to the
entire formula. A formula that is not in the prenex normal form can be converted
to one in the prenex normal form by a series of equivalence transformations
[CL73].

SILK supports Skolemization by providing special constants # and #1, #2,
#3, and so on. As with other constants in SILK, these symbols can be used
both in argument positions and in the position of a function. For instance,
#(a, #, #2(c, #2)) is a legal function term.

Each occurrence of the symbol # denotes a new constant. Generation of
such a constant is the responsibility of the SILK compiler. For instance, in
#(a, #, #2(c, #2)), the two occurrences of # denote two different constants
that do not appear anywhere else. In the first case, the constant is in the
position of a function symbol. The numbered Skolem constants, such as #2 in
our example, also denote a new constant that does not occur anywhere else in
the rulebase. However, the different occurrences of the same numbered symbol
in the same rule denote the same new constant. Thus, in the above example the
two occurrences of #2 denote the same new symbol. Here is a more complete
example:

holds(a,_#1) and between(1,_#1,5) ;

between(minusInf,_#(?Y),?Y) :- timepoint(?Y) and ?Y != minusInf ;

In the first line, the two occurrences of #1 denote the same new Skolem con-
stant, since they occur in the scope of the same rule. In the second line, the
occurrence of # denotes a new Skolem function symbol. Since we used # here,
this symbol is distinct from any other constant. Note, however, that even if
we used #1 in the second rule, that symbol would have denoted a distinct
new function symbol, since it occurs in a separate rule and there is no other
occurrence of #1 in that rule.

Semantics: The Skolem constants in SILK are in some ways analogous to
the blank nodes in RDF. However, they have semantics suitable for a rule-
based language and it has been argued in [YK03b] that the Skolem semantics is
superior to RDF, which relies on existential variables in the rule heads [Hay04].
�

Editor’s Note 2.13: Discuss the relationship of skolemization to derived
equality. �

36

2.15 Aggregation

SILK supports SQL-like aggregation over the results of a SILK query. The
general syntax is

?Result = operator{?Var [GroupingVarList] | Query }

where operator can be silk:max, silk:min, silk:avg, silk:count, silk:sum,
silk:collectset, or silk:collectbag.

Example 2.4:

// count employees

?- ?employeeCount = silk:count{?who | ?who # Employee} ;

// average salary of all employees

?- ?avgSalary = silk:avg{?salary | ?who # Employee[salary(?year)->?salary]} ;

�

The last two operators return lists of the instantiations of ?Var that sat-
isfy Query with (silk:collectbag) and without (silk:collectset) possible
duplicates.

Example 2.5:

// years for which salary information is available

?- ?years = silk:collectbag{?year | ?who[salary(?year)->?salary]} ;

// unique years for which salary information is available

?- ?years = silk:collectset{?year | ?who[salary(?year)->?salary]} ;

�

The grouping variables provide functionality similar to GROUP BY in SQL.
They have the effect that the aggregation produces one list of results per every
instantiation of the variables in GroupingVarList for which Query has a solution.
The variable ?Result gets successively bound to each such list (one list at a
time).

Example 2.6:

// each employee’s average salary along with the value of the grouping variable ?who

?- ?avgSalary = silk:avg{?salary[?who] | ?who # Employee[salary(?year)->?salary]} ;

// total salary by year

?- ?yearlyPayroll = silk:sum{?salary[?year] | ?who # Employee[salary(?year)->?salary]} ;

�

37

2.16 SILK and XML Schema Data Types

SILK supports the primitive XML Schema data types [BM04]. The syn-
tax is the same as in N3 and RIF. For instance, "abc"^^xsd:string,
"2005-07-18"^^xsd:date, "2008-01-03T15:55:40.34"^^xsd:dateTime,
"123.56"^^xsd:decimal, "321"^^xsd:integer, "23e5"^^xsd:float, and so
on. Some frequently used data types have convenient abbreviations, e.g. "abc"
for strings, 123.56 for decimals, 345 for integers, and 23e5 for floats.

2.17 Overview of the Semantics of SILK

A single point of reference for the model-theoretic semantics of SILK will be
given in a separate document. Here we will only give an overview and point to
the papers where the semantics of the different layers were defined separately.

First, we note that the semantics of the Lloyd-Topor layers — both mono-
tonic and nonmonotonic — is transformational and was given in Sections 2.5
and 2.7. Similarly, the Courteous layer is defined transformationally and is
described in [Gro99, WGK+09].

The model theory of NAF is given by the well-founded semantics as described
in [VRS91]. The model theory behind HiLog is described in [CKW93] and F-
logic is described in [KLW95]. The semantics of inheritance that is used in SILK
is defined in [YK03a]. The model theory of reification is given in [YK03b] and
was further extended to reification of rules in [KLP+04].

The semantics of the Equality layer is based on the standard semantics (for
instance, [CL73]) but is modified by the unique name assumption, which
states that syntactically distinct terms are unequal. This modification is de-
scribed in [KLW95], and we summarize it here. First, without equality, SILK
makes the unique name assumption. With equality, the unique name assump-
tion is modified to say that terms that cannot be proved equal with respect to
:=: are assumed to be unequal. In other words, SILK makes a closed world
assumption about explicit equality.

Other than that, the semantics of :=: is standard. The interpretation
of this predicate is assumed to be an equivalence relation with congruence
properties. A layman’s term for this is “substitution of equals by equals.”
This means that if, for example, t:=:s is derived for some terms t and s then,
for any formula ϕ, it is true if and only if ψ is true, where ψ is obtained from
ϕ by replacing some occurrences of t with s.

Overall, the semantics of SILK has a nonmonotonic flavor even without
NAF and its extension layers. This is manifested by the use of the unique
name assumption (modified appropriately in the presence of equality) and the
treatment of constraints. To explain the semantics of constraints, we first need
to explain the idea of canonical models.

In classical logic, all models of a set of formulas are created equal and are
given equal consideration. Nonmonotonic logics, on the other hand, carefully
define a subset of models, which are declared to be canonical and logical
entailment is considered only with respect to this subset of models. Normally,

38

the canonical models are so-called minimal models, but not all minimal models
are canonical.

Any rule set that does not use the features of the NAF layer and its exten-
sions is known to have a unique minimal model, which is also its canonical model.
This is an extension of the well-known fact for Horn clauses in classical logic
programming [Llo87]. With NAF, a rule set may have multiple incomparable
minimal models, and it is well-known that not all of these models appropriately
capture the intended meaning of the rules. However, it turns out that one such
model can be distinguished, and it is called the well-founded model [VRS91].
A formula is considered to be true according to the SILK semantics if and only
if it is true in that one single model, and the formula is false if and only if it is
false in that model.

Now, in the presence of constraints, the semantics of SILK is defined as
follows. Given a rulebase, first its canonical model is determined. In this process,
all constraints are ignored. Next, the constraints are checked in the canonical
model. If all of them are true, the rulebase is said to be consistent. If at
least one constraint is false in the canonical model, the constraint is said to be
violated and the rulebase is said to be inconsistent.

2.18 SILK Predicates

SILK defines a number of predicates, which are named using CURIEs in the
silk namespace.

Rationale: In general, we prefer use of SILK-defined predicates to new lan-
guage syntax. �

2.18.1 Querying External Data Sources

SILK will often use data from external data sources. A number of predicates
are defined to access such data.

2.18.1.1 SPARQL Endpoints SILK supports both SELECT and CON-
STRUCT queries on SPARQL endpoints.

silk:sparqlQuery(?outputs, ?inputs, ?uri, ?template) executes the
SPARQL SELECT query ?template, after substituting varibles in the list
?inputs, using the endpoint ?uri, binding the variables in the list ?outputs.

Example 2.7: silk:sparqlQuery([?river1,?river2],

[’’], "http://localhost:8080/sparql/parliament",

"SELECT DISTINCT ?river1 ?river2 WHERE { ?river1

<http://example.org/rivers#flowsInto> ?river2 }") �

silk:sparqlConstruct(?inputs, ?uri, ?template) executes the
SPARQL CONSTRUCT query ?template, after substituting variables in the

39

list ?inputs, using the endpoint ?uri and loads the resulting graph using the
SILK RDF/OWL parser.

Example 2.8: silk:sparqlConstruct([’’],

"http://localhost:8080/sparql/parliament", "CONSTRUCT { ?r

rdf:type <http://example.org/rivers#River> } WHERE { ?r rdf:type

<http://example.org/rivers#River> }") �

2.18.1.2 ODBC Data Sources SILK supports access to ODBC data
sources including relational databases and spreadsheets.

silk:odbcOpen(?dsn) opens the ODBC data source with name ?dsn to
allow subsequent silk:odbcQuerys.

Example 2.9: silk:odbcOpen(silk emergency data) ; �

silk:odbcQuery(?outputs, ?inputs, ?dsn, ?template) executes the
SQL query ?template, after substituting variables in the list ?inputs, using the
ODBC data source with name ?dsn, binding the variables in the list ?outputs.

Example 2.10: silk:odbcQuery([?ContactEmail, ?Message],

[?riverSymbol], silk emergency data, "SELECT emergency contact,

message from FirstResponders where river = ?") �

2.18.1.3 Web Services SILK currently provides access to RESTful web
services. SOAP web services are expected to be supported in the future.

silk:restWebService(?outputs, ?inputs, ?uri, ?xpath) invokes the
RESTful web service ?uri, after substituting variables in the list ?inputs, se-
lects values using the XPath expression ?xpath, and binds them to variables in
the list ?outputs.

Example 2.11: silk:restWebService([?Number],

[?Person], "http://localhost:8090/people/?name=1",

"//Person/phoneNumber/text()") �

2.18.1.4 Other SILK Engines SILK can query another running SILK En-
gine.

silkb:querySilkInstance(?outputs, ?bindingOrder, ?inputs,

?url, ?template) executes the SILK query ?template, after substitut-
ing variables in the list ?inputs, in the SILK Engine identified by ?url,
then binds the variables in the list ?outputs in the order specified by
?bindingOrder.

Example 2.12: silkb:querySilkInstance([?z], ["?z"], [?x],

"http://example.org/silk#engine1", "?- x(%1%, ?z);"); �

40

http://en.wikipedia.org/wiki/Open_Database_Connectivity

2.18.2 Built-ins

SILK provides built-in functions for datatype conversions, string operations,
etc.

2.18.2.1 SWRL Built-ins SILK currently provides signatures and imple-
mentations for the built-in procedures supported by SWRL [HPSB+04].

2.18.2.2 RIF Built-Ins Future SILK implementations will provide sig-
natures and implementations for the RIF Built-in Predicates and Functions
[PBK08].

2.18.2.3 XPath and XQuery Functions and Operators XQuery and
XPath Functions and Operators [MMW07] were the basis for most of the SWRL
and RIF built-ins. Signatures and implementations will be provided using their
original URIs. Operators may be used directly by the SILK infix operators.

2.18.3 External Actions

SILK can invoke procedures that affect the outside world. The following predi-
cates are currently defined.

silkb:writeLn(?input) writes the string ?input to stdout, followed by a
newline.

Example 2.13: silkb:writeLn("hello world!") �

silkb:sendEmail(?smtpServer, ?from, ?to, ?subject, ?text) sends
email from address ?from to address ?to with subject ?subject and body
?text via host ?smtpServer.

Example 2.14: silkb:sendEmail("smtp.bbn.com", "dkolas@bbn.com",

"mdean@bbn.com", "greetings", "Hello Mike!") �

2.18.4 Logging

The following external predicates provide an interface to the Java logging service
Log4J, which reports messages for a specified logger and hierarchical level in
accordance with a dynamic external configuration. These can be used to report
contraint violations and other conditions.

silkb:fatal(loggerName, message) reports a fatal error.
silkb:error(loggerName, message) reports an error.
silkb:warn(loggerName, message) reports a warning.
silkb:info(loggerName, message) reports an information message.
silkb:debug(loggerName, message) reports a debugging message.
silkb:trace(loggerNme, message) reports a trace message.

Example 2.15: silkb:error("silk", "an error") ; �

41

http://logging.apache.org/log4j/

2.18.5 List of All SILK Predicates

This section lists all the predicates in the silk and silkb namespaces, with
descriptions and/or references to other sections.

silk:arg. See section 2.9.
silk:arith(?var, ?value) binds variable ?var to ?value.
silk:avg. See section 2.15.
silk:binding. See section 2.9.
silk:cancel. See section 2.8.5.
silk:clause. TBD.
silk:collectbag. See section 2.15.
silk:collectset. See section 2.15.
silk:count. See section 2.15.
silkb:debug. See section 2.18.4.
silkb:error. See section 2.18.4.
silk:ExternalPredicate. See section 2.9.
silkb:fatal. See section 2.18.4.
silk:in. See section 2.9.
silkb:info. See section 2.18.4.
silk:javaClass. See section 2.9.
silk:max. See section 2.15.
silk:min. See section 2.15.
silk:odbcOpen. See section 2.18.1.2.
silk:odbcQuery. See section 2.18.1.2.
silk:opposes. See section 2.8.4.
silk:out. See section 2.9.
silk:overrides. See section 2.8.3.
silk:PersistentQuery. See section 2.4.1.
silkb:querySilkInstance. See section 2.18.1.4.
silk:restWebService. See section 2.18.1.3.
silk:sparqlConstruct. See section 2.18.1.1.
silk:sparqlQuery. See section 2.18.1.1.
silk:sum. See section 2.15.
silk:symbolToURI(?symbol, ?uri) converts the symbol ?symbol to the

URI ?uri.
silkb:sendEmail. See section 2.18.3.
silkb:trace. See section 2.18.4.
silk:type. See section 2.9.
silkb:warn. See section 2.18.4.
silkb:writeLn. See section 2.18.3.

2.19 SILK Grammars

A grammar provides a formal description of a language. The following subsec-
tions describe SILK in terms of a human-readable grammar for reference and an
executable machine-readable grammar and API for implementations. The latter

42

are needed because parser generation tools impose restrictions on grammars to
facilitate efficient and unambiguous parsing.

Editor’s Note 2.14: Some changes to these grammars can be expected as
SILK continues to evolve. �

2.19.1 SILK Human-Readable Grammar

The following is an Extended BNF grammar for SILK intended for human con-
sumption.

Input ::= (Statement ";")* ¡EOF¿
Statement ::= Rule

| Query

| Mutex

| PrefixDeclaration
Rule ::= (Label)? Head (":-" Body)?

Label ::= "{"Term "}"
Head ::= Formula
Body ::= Formula

Formula ::= Term

| "(" Formula ")"

| Quantifier "(" Formula ")"

| "neg" Formula

| "naf" Formula

| Formula "and" Formula

| Formula "or" Formula

| Formula "==¿" Formula

| Formula "¡==" Formula

| Formula "¡==¿" Formula
Term ::= ¡variable¿

| Constant

| "(" Term ")"

| Function

| Molecule

| PathExpression

| List

| ReifiedStatement

| Aggregate

| Term "=" Term

| Term "!=" Term

| Term ":=:" Term

| Term "+" Term

43

| Term "-" Term

| Term "*" Term

| Term "/" Term

| Term "¡" Term

| Term "¡=" Term

| Term "¿" Term

| Term "¿=" Term
TermList ::= Term ("," Term)*
Constant ::= Number

| ¡symbol¿

| ¡string¿ ("ˆˆ" ¡curie¿)?

| URI
Number ::= ¡integer¿

| ¡decimal¿

| ¡float¿
URI ::= ¡fulluri¿

| ¡curie¿
Function ::= Term "(" TermList ")"
Molecule ::= ValueMolecule

| BooleanValuedMolecule

| ClassMembershipMolecule

| SubclassMolecule

| SignatureMolecule

| BooleanSignatureMolecule

| ComplexMolecule
ValueMolecule ::= Term "[" ValueMoleculeInternal "]"

BooleanValuedMolecule ::= Term "[" BooleanValuedMoleculeInternal "]"
ClassMembershipMolecule ::= Term "#" Term

SubclassMolecule ::= Term "##" Term
SignatureMolecule ::= Term "[" SignatureMoleculeInternal "]"

BooleanSignatureMolecule ::= Term "[" BooleanSignatureMoleculeInternal "]"
ComplexMolecule ::= Term "[" ComplexMoleculeInternal ("," ComplexMoleculeInternal

ValueMoleculeInternal ::= Term ("-¿" | "*-¿") (Term | Set)
BooleanValuedMoleculeInternal ::= Term

SignatureMoleculeInternal ::= Term (CardinalityConstraints)? ("=¿" | "*=¿") Term
BooleanSignatureMoleculeInternal ::= Term "=¿"

ComplexMoleculeInternal ::= ValueMoleculeInternal

| BooleanValuedMoleculeInternal

| ClassMembershipMolecule

| SubclassMolecule

| SignatureMoleculeInternal

44

| BooleanSignatureMoleculeInternal
Set ::= "{"TermList "}"

CardinalityConstraints ::= "{"¡integer¿ ":" (¡integer¿ | "*") "}"
PathExpression ::= Term (("." | "!") Term)*

List ::= "[" TermList ("|" Term)? "]"
Quantifier ::= ("forall" | "exist") VariableList

VariableList ::= ¡variable¿ ("," ¡variable¿)*
ReifiedStatement ::= "$""{"Statement "}"

Aggregate ::= Constant "{"Variable ("[" VariableList "]")? "|" Formula "}"
Query ::= "?-" Formula
Mutex ::= "!-" Term "and" Term ("|" Formula)?

PrefixDeclaration ::= ":-" "prefix" ¡symbol¿ "=" URI

2.19.2 Restrictions for SILK Layers

These grammars represent the composition of all the layers of SILK. They are
necessarily somewhat over-permissive in that some syntactically valid rulesets
may not be semantically valid.

The different layers of SILK impose restrictions on this grammar as follows:

Editor’s Note 2.15: Summarize restrictions from previous sections in terms
of the human-readable grammar. Consider use of a table for easy comparison.
�

2.19.3 SILK LL(k) Grammar

The following isan executable JavaCC LL(k) grammar for SILK based on
the human-readable grammar above. LL(k) grammars, used by JavaCC
and ANTLR, preclude use of “left recursion” such as Formula ::= Formula

"or" Formula. This is generally resolved by replacing references to the re-
cursive non-terminal with a new non-terminal that include productions for the
common prefix and possible continuations.

Input ::= (Statement (¡eos¿ | ("." ¡EOF¿)))* ¡EOF¿
Statement ::= Statement1

Statement1 ::= Rule

| Query

| Mutex

| PrefixDeclaration
Aggregate ::= Constant "{"Variable ("[" VariableList "]")? "|" Body "}"
Constant ::= NumericValue

| Uri

| ¡symbol¿

| ¡string¿ ("ˆˆ" ¡curie¿)?

45

https://javacc.dev.java.net/

NumericValue ::= IntegerValue

| ¡decimal¿

| ¡float1¿
IntegerValue ::= ¡integer¿

Uri ::= ¡fulluri¿

| ¡curie¿
PrefixDeclaration ::= ":-" "prefix" ¡symbol¿ "=" Uri

Term ::= TermRelOp (("=" | "!=" | ":=:") TermRelOp)*
TermRelOp ::= TermAdd (("¡" | "¡=" | "¿" | "¿=") TermAdd)*

TermAdd ::= TermSubtract ("+" TermSubtract)*
TermSubtract ::= TermMultiply ("-" TermMultiply)*
TermMultiply ::= TermDivide ("*" TermDivide)*

TermDivide ::= Term1 ("/" Term1)*

Term1 ::=

Term0 ("(" Function0 ")" | "[" Molecule0 "]" | "#"

ClassMembershipMolecule | "##" SubclassMolecule | "!"
PathExpression | "." PathExpression)*

Term0 ::= Aggregate

| Constant

| Variable

| List

| ReifiedStatement

| "(" Formula ")"
Variable ::= ¡variable¿

Function0 ::= TermList
TermList ::= (Term ("," Term)*)?

List ::= "[" TermList ("|" Term)? "]"
Rule ::= (Label)? (Rule1)

Label ::= "{"Term "}"
Rule1 ::= Body (":-" Body)?

VariableList ::= ¡variable¿ ("," ¡variable¿)*
Head ::= Formula
Body ::= Formula

Formula ::= FormulaOr
Quantifier ::= "exist"

| "forall"
FormulaImp ::= Formula0 ((¡rimp¿ | ¡limp¿ | ¡bidi¿) Formula)*
FormulaAnd ::= FormulaImp (("and") FormulaImp)*

FormulaOr ::= FormulaAnd ("or" FormulaAnd)*
Query ::= "?-" Body

Formula0 ::= "neg" Formula0

| "naf" Formula0

46

| Quantifier VariableList "(" Formula ")"

| Term
Mutex ::= "!-" Term ("and") Term ("|" Body)?

Molecule0 ::= Molecule2 ("," Molecule2)*
ClassMembership-

Molecule
::= Term

SubclassMolecule ::= Term
Molecule2 ::= ("*")? Term (Molecule3)?
Molecule3 ::= "-¿" (Term | Set)

| "*-¿" (Term | Set)

| (CardinalityConstraints)? ("*")? "=¿" (Term)?
Set ::= "{"TermList "}"

CardinalityConstraints ::= "{"IntegerValue ":" (IntegerValue | "*") "}"
PathExpression ::= Term

ReifiedStatement ::= "$""{"Statement1 "}"

Editor’s Note 2.16: Consider adding an alternative SILK LALR Grammar
section 2.17.4. �

2.19.4 SILK Meta Model

The following is a meta model for SILK expressed in SILK:

<>[rdfs:comment->"SILK Meta Model represented in SILK",

owl:versionInfo->"$Id: SILK.silk 1202 2009-12-21 07:18:28Z mdean $"] ;

// TODO: should these be in the silk namespace, silkmm, or something else?

// TODO: would prefer to use {1} for fixed cardinality

Model[statement {0:*} *=> Statement] ;

Statement[label {0:1} *=> Term,

uniqueName {0:1} *=> Term,

annotation {0:*} *=> Annotation] ;

// indentation follows class hierarchy

Rule ## Statement[head {0:1} => Formula,

body {0:1} => Formula] ;

Query ## Statement[query {1:1} => Formula] ;

Mutex ## Statement /* [] */ ;

47

PrefixDeclaration ## Statement[’prefix’ {0:1} => Symbol, // prefix is a reserved token

uri {0:1} => FullURI] ;

Formula /* [] */ ;

Term ## Formula /* [] */ ; // a Term can be used anywhere a Formula can

Constant ## Term /* [value {1:1} *=> top literal] */ ;

Symbol ## Constant[value {1:1} => xsd:string] ;

TypedConstant ## Constant[datatype {1:1} *=> xsd:anyURI] ;

SilkString ## TypedConstant[value {1:1} => xsd:string] ;

SilkNumber ## TypedConstant ;

SilkInteger ## SilkNumber[value {1:1} => xsd:integer] ;

// datatype -> xsd:integer

SilkDecimal ## SilkNumber[value {1:1} => xsd:decimal] ;

// datatype -> xsd:decimal

SilkFloat ## SilkNumber[value {1:1} => xsd:float] ;

// datatype -> xsd:float

URI ## TypedConstant[value {1:1} *=> xsd:anyURI] ;

// datatype *-> xsd:anyURI

FullURI ## URI ;

CURIE ## URI[’prefix’ {1:1} => Symbol, // prefix is a reserved token

localName {1:1} => xsd:string] ;

Variable ## Term[name {1:1} => xsd:string] ;

Function ## Term[predicate {1:1} => Term,

argument {0:*} => Term] ;

List ## Term[value *=> Term] ;

Molecule ## Term ;

ValueMolecule ## Molecule[predicate {1:1} *=> Term,

value {1:1} *=> Term] ;

48

BooleanValuedMolecule ## ValueMolecule[value {1:1} => xsd:boolean] ;

SetValuedMolecule ## Molecule[predicate {1:1} *=> Term,

value {0:*} => Term] ;

ClassMembershipMolecule ## Molecule[member {1:1} => Term,

class {1:1} => Term] ;

SubclassMolecule ## Molecule[subclass {1:1} => Term,

superclass {1:1} => Term] ;

SignatureMolecule ## Molecule[method {1:1} *=> Term,

type {1:1} *=> Term,

minCardinality {0:1} *=> Term, // Integer or Variable

maxCardinality {0:1} *=> Term] ; // Integer or Variable

BooleanSignatureMolecule ## SignatureMolecule /* [type -> xsd:boolean,

maxcardinality -> 1] */ ;

ComplexMolecule ## Molecule[subject {1:1} => Term,

molecule {0:*} => Molecule] ;

PathExpression ## Term[molecule {1:*} => Molecule] ;

ReifiedStatement ## Term[statement {1:1} => Statement] ;

Aggregate ## Term[operator {1:1} => Constant,

aggregationVariable {1:1} => Variable,

groupingVariable {0:*} => Variable,

query {1:1} => Query] ;

CompoundTerm ## Term[connective {1:1} => Connective,

left {1:1} => Term,

right {1:1} => Term] ;

CompoundFormula ## Formula[connective {1:1} => Connective,

left {1:1} => Formula,

right {1:1} => Formula] ;

NegatedFormula ## Formula[type {1:1} => Negation,

formula {1:1} => Formula] ;

QuantifiedFormula ## Formula[quantifier {0:*} => Quantifier,

formula {1:1} => Formula] ;

Quantifier[variable {1:*} => Variable] ;

49

ForAll ## Quantifier ;

Exist ## Quantifier ;

Negation ;

Neg # Negation ;

Naf # Negation ;

Annotation /* [] */ ;

Connective ;

2.19.5 SILK Java API

A Java Application Programming Interface (API) has been developed for SILK
and is expected to be the primary interface used by most rule editing and
execution tools.

The SILK API is composed of a set of component APIs:

• The Abstract Syntax API provides a set of interfaces based on the SILK
grammar, Section 2.19.

• The Parser API supports a SILK parser and importing of various repre-
sentations (e.g. RDF/XML).

• The Serializer API supports writing of SILK and export to other repre-
sentations.

• The Engine API provides methods to control a SILK reasoning engine.

• The Query API provides a JDBC-like interface to query results.

• The Transform API provides a common interface to implementations of
Lloyd-Topor and hypermonotonic transformations.

• The Checker API provides a standard interface for checking SILK state-
ments for language (Section 2.19.2) and/or implementation restrictions.

The interface hierarchy in the Abstract Syntax API closely mirrors the SILK
Meta Model. In general, a Model contains Statements including Rules which
contain head and/or body Formulas which contain Terms.

Editor’s Note 2.17: Consider adding a UML diagram showing both inheri-
tance and containment. �

Javadoc for the SILK API is included in SILK software releases available at
http://silk.semwebcentral.org.

50

http://java.sun.com/javase/technologies/database/
http://java.sun.com/j2se/javadoc/
http://silk.semwebcentral.org/

2.20 SILK Conventions

The utility of a computer language is generally enhanced by conventions regard-
ing its use.

Editor’s Note 2.18: This is a placeholder for a section that will include
naming conventions, suggested graphical representations (color and black-and-
white), web-rendering guidelines, a “pronunciation guide” for reading SILK
aloud, and (references to) a structured/controlled English vocabulary. �

Issue 2.17: These should consider W3C and other internationalization and
accessibility guidelines. �

2.20.1 SILK Media Type

The nonstandard Internet media type (MIME type) application/x-silk may
be used for content negotiation. Related media types are application/rdf+xml
and application/rif+xml.

Issue 2.18: If a standard media type is desired, we could try to register
text/silk or application/silk. �

2.21 Additional Features for SILK

The following features were not included in SWSL, but most were listed as
possible extensions. These features will be added to SILK, in decreasing priority
order.

1. Predicates and functions with named arguments. This extension
allows terms and predicates of the form p(foo -> 1, bar -> 2). The
order of the arguments in such terms is immaterial. Variables are not
allowed over the argument names; otherwise, unification has quadratic
complexity.

Issue 2.19: Note: independence of the order is very hard to imple-
ment unless we limit the arg names to constants (or, at least, variable-free
terms). �

2. Procedural attachments, state changes à la Transaction Logic,
situated logic programs. A procedural attachment is a predicate
or a method that is implemented by an external procedure (e.g., in Java
or Python). Such a procedure can have a side effect on the real world
(e.g., sending an email message or activating a device) or it can receive
information from the outside world. First formalizations of these ideas
in the context of database and rule based languages appeared in [MW80,
CGK89]. These ideas were more recently explored in [Gro04b] in the

51

http://www.ietf.org/rfc/rfc3870.txt
http://www.w3.org/2005/rules/wg/draft/rif-bld/#Appendix:_RIF_Media_Type_Registration

context of e-commerce. Transaction Logic [BK98] provides a seamless
integration of these concepts into the logic.

An attached procedure can be specified by a link statement, which asso-
ciates a predicate or a method with an external program. The exact details
of the syntax have not been finalized, but the following is a possibility:

attachment relation/Arity

name-of-java-procedure(integer,string,...)

This syntax can be generalized to include object-oriented methods.

Editor’s Note 2.19: Procedural attachments should include a standard
set of builtin functions, including the XQuery and XPath Functions and
Operators [MMW07] on XML Schema datatypes that are the basis for
most builtins for SWRL, FLORA-2, and RIF. These could alternatively
be made methods on datatype classes, as in FLORA-2. �

Another necessary extension involves update primitives - primitives for
changing the underlying state of the knowledge. These primitives can add
or delete facts, and even add or delete rules. A declarative account of
such update operations in the context of a rule-based language is given by
Transaction Logic [BK98]. This logic also can also be used to represent
Event-Condition-Action rules [BKC94].

Editor’s Note 2.20: See sections 2.9 and 2.18. �

3. Database-style Constraints. Constraints play a very important role in
database and knowledge base applications. As a future extension, SILK
will have database-style constraints. Database constraints are different
in nature from restrictions used in Description Logic. Whereas restric-
tions in Description Logic are part of the same logical theory as the rest
of the statements and are used to derive new statements, constraints in
databases are not used to derive new information. Instead, they serve as
tests of correctness for the canonical models of the knowledge base. In
this framework, canonical models (e.g., the well-founded model [VRS91])
are first computed without taking constraints into account. These models
are then checked against the constraints. The models that do not satisfy
the constraints are discarded. In the case of the well-founded semantics,
which always yields a single model, testing satisfaction of the constraints
validates whether the knowledge base is in a consistent state.

4. Event sublanguage.

Editor’s Note 2.21: Expand based on slides 30-32 from B. Grosof
ISWC 2006 Reaction RuleML talk. �

52

5. If-then-else. The if test then test1 is sometimes more convenient
and familiar than the ==> operator. More important, however, is the
fact that the more complete idiom, if test then test1 else test2 ,
is known to be very useful and common in rule-based languages. Although
the else-part can be expressed with negation as failure, this is not natural
and most well-developed languages support the if-then-else idiom directly.
This idiom may be added to SILK later.

Editor’s Note 2.22: FLORA-2 includes if-then-else. �

6. “rest”-variables. The “rest” notation à la Common Logic [Com07] can
be useful in metaprogramming. A rest-variable binds to a list of variables
or terms and it always occurs as the last variable of a term. During
unification with another term, such a variable binds to a list of arguments
of that term beginning with the argument corresponding to the variable
through the rest of the term (hence the name of such variables). For
instance, in the following term, ?R is a rest-variable:

p(?X,?Y | ?R)

If this term is unified with p(?Z,f,?Z,q), then ?X binds to ?Z, ?Y to f,
and ?R to the list [?Z,q].

7. Constraint solving. Constraint solving (a.k.a. constraint logic program-
ming) is an important knowledge representation paradigm to be included
in SILK.

8. Non-ground identity relation, ==. This predicate is true if the argu-
ments are identical up to variable renaming. This predicate is not declar-
ative but can be very useful, as demonstrated by its extensive use in logic
programming.

The following features will be considered for inclusion in future versions of the
SILK language and/or supporting rulesets. These have not yet been prioritized.

• Modules. Management and use of large knowledge bases will require
additional naming and structuring mechanisms. These are expected to
leverage work on FLORA-2 modules and CycL microtheories [Cyc02]. It
should be possible to express overrides among such modules.

• Process descriptions. It should be possible to represent and
reason over process descriptions, including defaults and exceptions.
This is expected to leverage work from OWL-S [MBH+04] and the
Semantic Web Services Framework.

• Time. XML Schema provides basic date, time, and dateTime datatypes.
OWL-Time adds intervals. Allen Relations are relevant for qualitative
temporal reasoning.

53

http://www.w3.org/Submission/SWSF/
http://www.w3.org/TR/owl-time/

• Money. This should include support for conversions and ISO 4217 Cur-
rency Codes.

• Constraints beyond non-equality. This is likely to incorporate work
on Constraint Logic Programming.

• Percents and ratios. Look at how these are used in spreadsheets. Sup-
port for a rational datatype represented as a quotient of 2 integers, as in
Common Lisp, may be helpful for preserving precision.

• Spreadsheets. SILK should be able to import data directly from spread-
sheets. Consider also the use of spreadsheet-like metaphors for rule au-
thoring.

• SPARQL named graphs. The ability to name collections of axioms
and facts supports modularity and meta-programming.

• RDF, RDBMS, XQuery, Web Services, and API interfaces. SILK
should be able to import facts directly from existing data sources.

• Geospatial. GeoRSS provides an RDF vocabulary for basic geometries
based on the Open Geospatial Consortium’s Geography Markup Language
(GML). The Region Connection Calculus (RCC8) is relevant for qualita-
tive spatial reasoning. It would be helpful to have more intuitive relation
names than, e.g., NTPPi. Hybrid techniques will likely be necessary for
efficient quantitative geospatial reasoning.

• Named entities. People, organizations, and locations are commonly
referenced in rules. Definitions from the NIST Message Understanding
Conference (MUC) and Automatic Content Extraction (ACE) evaluations
are widely supported by information extraction products. Support should
accommodate both human presentations and unique identifiers, as well as
entity disambiguation (e.g. owl:sameAs and owl:differentFrom). FOAF is
relevant for dealing with People. Support for various social networking
algorithms and applications may also be desirable.

• Meta-reasoning. Some additional capabilities to reason over rules and
modules will likely be required. This is still ill-defined.

• Classical First Order Logic. Classical FOL will likely be required for
some aspects of process description and other applications. See Section 3.
It should be possible to flag at an appropriate grain size (ruleset down to
axiom) which language dialect is being used. Reasoning with FOL rules
may be incomplete.

• Structured comments and annotations. It should be possible to as-
sociate additional information with rules and other entities. This should
include workflow conventions such as TBD or @@. If possible, whites-
pace and other markup should be preserved. Compatibility with Wikis

54

http://georss.org/
http://xmlns.com/foaf/0.1/

and other collaborative authoring environments is desirable. Look at RIF
annotations. CycL knowledge base documentation conventions [Cyc02]
may be relevant here. Also consider augmenting textual comments with
Javadoc-like conventions. Some annotations may be semantically signifi-
cant. It should also be possible to associate comments with sets of rules.

• Persistent internal identifiers. It should be possible to associate per-
sistent unique identifiers or labels with rules and other entities, to track
naming and other changes over time. UUID URNs [LMS05] could be used
for these identifiers.

• Part/whole. Simple part-whole relations in OWL Ontologies provides a
basic OWL vocabulary.

• Distinguished inequality symbols. Possibly distinguish between user-
asserted and derived inequalities. This could involve predicates and/or
infix operators.

• Equation solving and quantitative reasoning. Consider integration
of Wolfram|Alpha.

• Rule macros. Allow the definition and use of rule macros.

• Implicit context. Provide some mechanism for adding implicit addi-
tional terms, e.g. on(mars) or at(time), to a specified set of rules, per-
haps with some block scoping mechanism. This is somewhat analagous to
the Pascal with statement.

Editor’s Note 2.23: Expand links above into references and add additional
references as these features are actually incorporated. �

3 SILK FOL

SILK FOL (First Order Logic) is a full first-order logic language that shares
many of the elements of SILK. It exists primarily to facilitate reuse of on-
tologies from other knowledge representations based on FOL, such as Cyc and
Common Logic. Large portions of SILK FOL can be simulated in SILK using
the hypermonotonic transform as discussed in Section 3.4.

3.1 Overview of SILK FOL

SILK FOL is a layered language. Unlike OWL, the layers are not organized
based on the expressive power and computational complexity. Instead, each
layer includes a number of new concepts that enhance the modeling power of
the language. This is done in order to make it easier to learn the language and to
help understand the relationship between the different features. Furthermore,

55

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/
http://www.wolframalpha.com

Figure 2: The Layers of SILK FOL

most layers that extend the core of the language are independent from each
other — they can be implemented all at once or in any partial combination.

The layered structure of SILK FOL is depicted in Figure 2.

Editor’s Note 3.1: Update Figure 2 to replace SWSL-FOL with SILK FOL.
�

The bottom of Figure 2 shows those layers of SILK FOL that have mono-
tonic semantics and therefore can be extended to full first-order logic. Above
each layer of SILK Rules, the figure shows the corresponding SILK FOL ex-
tension. The most basic extension is SILK FOL. The other three layers, SILK
FOL+Equality, SILK FOL+HiLog, and SILK FOL+Frames extend SILK FOL
both syntactically and semantically. Some of these extensions can be further
combined into more powerful FOL languages. We discuss these issues in Section
3.2.

3.2 SILK FOL Syntax

SILK FOL includes all the connectives used in first-order logic. First-order
negation is denoted by neg (in contrast to the default negation of SILK, which
is denoted by naf), and first-order implications are denoted by <== and ==> (in
contrast to :-, the nonmonotonic implication in SILK).

It follows from the above that SILK and SILK FOL share significant portions
of their syntax. In particular, every connective used in SILK FOL can also be
used in SILK. However, not every first-order formula in SILK FOL is a rule

56

and the rules in SILK are not first-order formulas (because of “:-”). Therefore,
neither SILK FOL is a subset of SILK nor the other way around. Furthermore,
even though the classical connectives neg and ==>/<== can occur in SILK, they
are embedded into an overall nonmonotonic language and their semantics cannot
be said to be exactly first-order.

Formally, SILK FOL consists of the following formulas:

• First-order atomic formulas

• If ϕ and ψ are SILK FOL formulas then so are ϕ and ψ, ϕ or ψ,
neg ϕ, ϕ ==> ψ, ϕ <== ψ, and ϕ <==> ψ.

• If ϕ is a SILK FOL formula and X is a variable, then the following are
also SILK FOL formulas: exist ?X (ϕ) and forall ?X (ϕ). SILK
FOL allows to combine quantifiers of the same sort, so exist ?X,?Y (ϕ)
is the same as exist ?X exist ?Y (ϕ).

As in the case of SILK, we will use the semicolon (“;”) to designate the end of
a SILK FOL formula.

SILK defines three extensions of SILK FOL. The first extension adds the
equality operator, :=:, the second incorporates the object-oriented syntax from
the Frames layer, and the third does the same for the HiLog layer.

Formally, SILK FOL+Equality has the same syntax as SILK FOL, but,
in addition, the following atomic formulas are allowed:

• term :=: term

SILK FOL+Frames has the same syntax as SILK FOL except that, in addi-
tion, the following is allowed:

• SILK molecules, as defined in the Frames Layer of SILK, are valid SILK
FOL formulas.

• The path expressions defined of the SILK Frames syntax are not used in
SILK FOL. In SILK, path expressions are interpreted differently in the
rule head and body. Since SILK FOL does not distinguish the head of a
rule from its body, the path expression syntax is not well-defined in this
context.

SILK FOL+HiLog extends SILK FOL by allowing HiLog terms and HiLog
atomic formulas instead of first-order terms and first-order atomic formulas.

Each of these extensions is not only a syntactic extension of SILK FOL
but also a semantic extension. This means that if ϕ and ψ are formulas in
SILK FOL then ϕ |= ψ in SILK FOL if and only if the same holds in SILK
FOL+Equality, SILK FOL+Frames, and SILK FOL+HiLog. We will say that
SILK FOL+Equality, SILK FOL+Frames, and SILK FOL+HiLog are conser-
vative semantic extensions of SILK FOL.

57

SILK FOL+HiLog and SILK FOL+Frames can be combined both syntac-
tically and semantically. The resulting language is a conservative semantic ex-
tension of both SILK FOL+HiLog and SILK FOL+Frames. Similarly, SILK
FOL+Equality and SILK FOL+Frames can be combined and the resulting
language is a conservative extension of both. Interestingly, combining SILK
FOL+Equality with SILK FOL+HiLog leads to a conservative extension of
SILK FOL+HiLog, but not of SILK FOL+Equality! More precisely, if ϕ and ψ
are formulas in SILK FOL+Equality and ϕ |= ψ then the same holds in SILK
FOL+HiLog. However, there are formulas such that ϕ |= ψ holds in SILK
FOL+HiLog but not in SILK FOL+Equality [CKW93].

3.3 Overview of the Semantics of SILK FOL

The semantics of the first-order sublanguage of SILK FOL is based on the
standard first-order model theory and is monotonic. The only new elements here
are the higher-order extension that is based on HiLog [CKW93] and the frame-
based extension based on F-logic [KLW95]. The respective references provide a
complete model theory for these extensions, which extends the standard model
theory for first-order logic.

3.4 Hypermonotonic Mapping: Combining SILK and

SILK FOL

In this section, we discuss how to combine knowledge expressed in SILK with
knowledge expressed in SILK FOL.

SILK is especially well suited for representing available knowledge and
desired patterns of reasoning, including nonmonotonic reasoning. The rules
paradigm has very efficient implementations, and there is vast experience in
using rule systems.

SILK FOL is especially well suited for reasoning about disjunctive informa-
tion, reasoning by cases, contrapositive reasoning, ets.

SILK and SILK FOL overlap largely in syntax, and SILK includes almost
all of the connectives of SILK FOL. The deeper issue, however, is the semantic
relationship between SILK and SILK FOL.

For several purposes it is desirable to combine knowledge expressed in the
SILK form with knowledge expressed in the SILK FOL form. One important
such purpose is:

• LP rules “on top of” FOL ontologies. “On top of” here means that some
of the predicates mentioned in the set of rules are defined via ontological
knowledge expressed in FOL. Such FOL ontologies can often be viewed as
“background” knowledge.

For example, the predicates might be classes or properties defined via OWL DL
axioms, i.e., expressed in the Description Logic fragment of FOL.

In terms of semantics, it is desirable to have reasoning in SILK respect as
much as possible the information contained in such background FOL ontologies.

58

Figure 3: The relationships among different formalisms

In particular, it is desirable to enable sufficient completeness in the semantic
combination to ensure that the conclusions drawn in SILK will be (classically)
not inconsistent with the SILK FOL ontologies.

Ideally, there would be one well-understood overall knowledge representation
formalism that subsumes both SILK and SILK FOL. This would provide the
general theoretical basis for combining arbitrary SILK knowledge with arbitrary
SILK FOL knowledge. Unfortunately, finding such an umbrella formalism is still
an open issue for basic research. Instead, the current scientific understanding
provides only a limited theoretical basis for combining SILK knowledge with
SILK FOL knowledge. On the bright side, there are limited expressive cases for
which it is well-understood theoretically how to do such combination.

The Venn diagram of relationships between the different formalisms, given
in Figure 3 illustrates the most salient aspects of the current scientific under-
standing.

The shield shape represents first-order logic-based formalisms. The
(diagonally-rotated) bread-slice shape shows the expressivity of the logic pro-
gramming based paradigms. These overlap partially — in the Horn rules subset.
FOL includes expressiveness beyond the overlap, notably: positive disjunctions;
existentials; and entailment of non-ground and non-atomic conclusions. Like-
wise, LP includes expressiveness beyond the overlap, such as negation-as-failure,
which is logically nonmonotonic. Description Logic (cf. OWL DL), depicted as
an oval shape, is a fragment of FOL.

Horn FOL is another fragment of FOL. Horn LP is a slight weakening of

59

Horn FOL. “Weakening” here means that the conclusions from a given set of
Horn premises that are entailed according to the Horn LP formalism are a subset
of the conclusions entailed (from that same set of premises) according to the
Horn FOL formalism. However, the set of ground atomic conclusions is the
same in the Horn LP as in the Horn FOL. For most practical purposes (e.g.,
relational database query answering), Horn LP is thus essentially similar in its
power to the Horn FOL.

Horn LP is a fragment of both FOL and nonmonotonic LP — i.e., of both
SILK and SILK FOL. Horn LP is thus a limited “bridge” that provides a way
to pass information — either premises, or ground-atomic conclusions — from
FOL to LP, or vice versa. Knowledge from FOL that is in the Horn LP subset
of expressiveness can be easily combined with general LP knowledge. Vice
versa, knowledge from LP that is in the Horn LP subset of expressiveness can
be easily combined with general FOL knowledge. Description Logic Programs
(DLP) [GHVD03] represent a fragment of Horn LP. It likewise acts as a “bridge”
between Description Logic (i.e., OWL DL) and LP.

Note that, technically, LP uses a different logical connective for implication
(“:-” in SILK syntax) than FOL uses. When we speak of Horn LP as a fragment
of FOL, we are viewing this LP implication connective as mapped into the FOL
implication connective (also known as material implication).

3.4.0.1 Horn LP as “bridge”. To summarize, there is some initial good
news about semantic combination:

• The Horn LP case is a “bridge” between SILK and SILK FOL.

• The DLP case is a “bridge” between SILK and OWL DL.

3.4.0.2 Builtin predicates. Another case of well behaved semantic com-
bination is for builtin predicates that are purely informational, e.g., that
represent arithmetic comparisons or operations such as less-than or multiplica-
tion. Technically, in LP these can be viewed as procedural attachments. But
alternatively, they can be viewed as predicates that have fixed extensions. Their
semantics in both FOL and LP can thus be viewed essentially as virtual knowl-
edge base consisting of a set of ground facts. This thus falls into the Horn LP
fragment.

3.4.0.3 Hypermonotonic reasoning as “bridge”. Recently, a new the-
oretical approach called hypermonotonic reasoning [Gro04a] has been de-
veloped to enable a case of “bridging” between (nonmon) LP and FOL that is
considerably more expressive than Horn LP.

We will now describe in more detail some preliminary results about this
hypermonotonic reasoning approach that bear upon the relationship of LP to
FOL and thus upon how to combine LP knowledge with FOL knowledge.

Courteous LP (including its fragment: LP with negation-as-failure) can
be viewed as a weakening of FOL, under a simple mapping of Courteous LP

60

rules/conclusions into FOL. “Weakening” here means that for a given set of
premises, the set of conclusions entailed in the Courteous LP formalism is in
general a subset of the set of conclusions entailed by the FOL formalism. In
other words:

• (Courteous) LP is sound but incomplete relative to FOL.

This fundamental relationship between the formalisms provides an augmenta-
tion to the theoretical basis for combining knowledge in LP (i.e., SILK) with
knowledge in FOL.

Consider a set of rules S in LP and a set of formulas B in FOL. Let T be a
translation mapping from the language of S to the language of B. S is said to
be hypermonotonic with respect to B and T when S is sound but incomplete
relative to B, under the mapping T. That is, when the conclusions entailed in S
from a given set of premises P are in general always a subset of the conclusions
entailed in B from the translated premises of S.

Define CLP2 to be the fragment of the Courteous LP formalism in which
explicit negation-as-failure is omitted (i.e., prohibited). Each rule and mutex in
CLP2 can be mapped quite straightforwardly and intuitively to a clause in FOL:
simply replace the LP implication connective (“:-” in SILK syntax) by the FOL
implication connective. Observe that this is the same mapping/translation that
was considered in relating the Horn LP to FOL. Each ground-literal conclusion
in CLP2 can also be mapped, in the same fashion, into a ground-literal in FOL.

The restriction on Courteous LP to avoid explicit negation-as-failure is not
very onerous, essentially since the great majority of use cases in which explicit
negation-as-failure is employed can be reformulated during manual authoring
of rules so as to avoid it as a construct. More generally, the mapping can be
extended, by complicating it a bit, to permit explicit negation-as-failure.

Going in the reverse direction, every clause in FOL can also be mapped into
CLP2, in such a way that the resulting CLP information is a weakening of the
FOL clause that nevertheless preserves much of the strength of the FOL clause.
This reverse-translation mapping from FOL to CLP is complicated somewhat
by the directional nature of the LP implication connective. “Directional” here
means having a direction from body towards head. Each LP rule can be viewed
as a directed clause. Consider a FOL clause C that consists of a disjunction of
m literals:

• (universal closure of:) L1 or ... or Lm.

Here, each Li is an atom or a classically-negated atom. When mapping c to
CLP2, there are m possible choices of one for each possible choice of which
literal is to be made head of the LP rule. Each possible choice corresponds to a
different rule — the LP rule in which literal Li is chosen as head has the form:

• Li :- neg L1, ..., neg Li-1, neg Li+1, ..., neg Lm ;

Altogether, the FOL clause C is mapped into a set of m LP rules:

61

• L1 :- neg L2, neg L3, ..., neg Lm ;

• L2 :- neg L1, neg L3, ..., neg Lm ;

• ...

• Lm :- neg L1, neg L2, ..., neg Lm-1 ;

where neg (neg A) is replaced equivalently by A. This set of rules is called the
“omni-directional” set of rules for that clause — or, more briefly, the “omni
rules” for that clause.

In general, FOL axioms need not be clausal since they may include existen-
tial quantifiers. However, often skolemization can be performed to represent
such existentials in a manner that preserves soundness (as is usual for skolem-
ization). A refinement of the reverse translation mapping above is to exploit
such skolemization in order to relax the requirement of clausal form. We use
such skolemization particularly for head existentials.

Issue 3.1: Discuss mapping a clause into omni vs. omni + exclusion vs. just
exclusion. �

3.4.0.4 Automatic weakened translation of FOL ontologies into
SILK. In the ontologies aspect of SILK, it is desirable to have a “bridging”
technique to automatically translate FOL ontologies into SILK FOL in such a
manner as to preserve soundness (from an FOL viewpoint) but to be neverthe-
less fairly strong (i.e., capture much of the strength/content of the original FOL
axioms). The precise algorithm used to obtain the SILK translation for a given
axiom in SILK FOL is as follows:

Input: a formula F in SILK FOL.
Output: a set of rules R, expressed in SILK.

1. Translate F into formula F1 in Prenex Normal Form.

2. Skolemize F1 to get F2, which is in Skolem Normal Form.

3. Write F2 as a set S of clauses.

4. For each clause C in S, produce the omnidirectional set of rules
for C (as defined above).

R then is the union of all the omnidirectional sets of rules produced
at Step 4.

3.5 Parsing SILK FOL

The SILK grammar has been relaxed to incorporate SILK FOL. Specifically,
a SILK FOL formula is represented as a body-less rule. Additional syntactic
constraints can be checked to limit a rule set to only SILK or SILK FOL rules.

62

Rationale: There’s a tremendous amount of overlap between the SILK and
SILK FOL grammars and APIs. Maintaining 2 separate sets is impractical. �

3.6 Additional Features for SILK FOL

The following feature was not included in SWSL-FOL, but was listed as a pos-
sible extension; it will be included in SILK FOL.

• Predicates and functions with named arguments. This extension
allows the terms and predicates of the form p(foo -> 1, bar -> 2).
The order of the arguments in such terms is immaterial. Variables are not
allowed over the argument names; otherwise, unification has quadratic
complexity.

References

[BBB+05] S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull,
M. Kifer, D. Martin, S. McIlraith, D. McGuinness, J. Su, and
S. Tabet. SWSL: Semantic Web Services Language. Technical
report, W3C, April 2005. http://www.w3.org/Submission/SWSF-
SWSL/.

[BBC+07] A. Berglund, S. Boag, D. Chamberlin, M.F. Fernandez, M. Kay,
J. Robie, and J. Simeon. Xml path language (xpath) 2.0. Technical
report, W3C, January 2007. http://www.w3.org/TR/xpath20/.

[BK98] A.J. Bonner and M. Kifer. A logic for programming database trans-
actions. In J. Chomicki and G. Saake, editors, Logics for Databases
and Information Systems, chapter 5, pages 117–166. Kluwer Aca-
demic Publishers, March 1998.

[BK08] H. Boley and M. Kifer. RIF Framework for logic dialects. W3C
Working Draft. http://www.w3.org/TR/rif-fld/, July 2008.

[BKC94] A.J. Bonner, M. Kifer, and M. Consens. Database programming
in transaction logic. In A. Ohori C. Beeri and D.E. Shasha, edi-
tors, Proceedings of the International Workshop on Database Pro-
gramming Languages, Workshops in Computing, pages 309–337.
Springer-Verlag, February 1994. Workshop held on Aug 30–Sept 1,
1993, New York City, NY.

[BLFM05] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform resource
identifiers (uri). Technical report, Internet Engineering Task Force,
January 2005. http://www.ietf.org/rfc/rfc3986.txt.

[BM04] Paul V. Biron and Ashok Malhotra. XML schema part 2: Datatypes
second edition. Recommendation 28 October 2004, W3C, 2004.

63

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/rif-fld/
http://www.ietf.org/rfc/rfc3986.txt

[BM08] M. Birbeck and S. McCarron. CURIE Syntax 1.0: A syntax
for expressing compact URIs. Technical report, W3C, May 2008.
http://www.w3.org/TR/curie/.

[CGK89] D. Chimeti, R. Gamboa, and R. Krishnamurthy. Towards an open
architecture for ldl. In Int’l Conference on Very Large Data Bases,
pages 195–203, 1989.

[CKW93] W. Chen, M. Kifer, and D.S. Warren. HiLog: A foundation for
higher-order logic programming. Journal of Logic Programming,
15(3):187–230, February 1993.

[CL73] C.L. Chang and R.C.T. Lee. Symbolic Logic and Mechanical The-
orem Proving. Academic Press, 1973.

[Com07] Common Logic Working Group. Common Logic (CL): A framework
for a family of logic-based languages. Technical report, ISO, 2007.
ISO 24707. http://metadata-stds.org/24707/index.html.

[Cyc02] Cycorp. Ontological engineering handbook. Manual, 2002.
http://www.cyc.com/doc/handbook/oe/oe-handbook-toc-opencyc.html.

[DG05] M. Duerst and M. Guignard. Internationalized resource identifiers
(iris). Technical report, Internet Engineering Task Force, January
2005. http://www.ietf.org/rfc/rfc3987.txt.

[DS04] M. Dean and G. Schreiber. Owl web ontology language reference.
Technical report, W3C, February 2004. W3C Recommendation.
http://www.w3.org/TR/owl-ref/.

[FLU94] J. Frohn, G. Lausen, and H. Uphoff. Access to objects by path
expressions and rules. In Int’l Conference on Very Large Data
Bases, pages 273–284, Santiago, Chile, 1994. Morgan Kaufmann,
San Francisco, CA.

[GDG+] B. Grosof, M. Dean, S. Ganjugunte, S. Tabet, ,
and C. Neogy. SweetRules: An open source plat-
form for semantic web business rules. Web site.
http://sweetrules.projects.semwebcentral.org/.

[GHVD03] B.N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic
programs: Combining logic programs with description logic. In 12th
International Conference on the World Wide Web (WWW-2003),
May 2003.

[Gro99] B.N. Grosof. A courteous compiler from generalized courteous logic
programs to ordinary logic programs. Technical Report RC 21472,
IBM, July 1999.

64

http://www.w3.org/TR/curie/
http://metadata-stds.org/24707/index.html
http://www.cyc.com/doc/handbook/oe/oe-handbook-toc-opencyc.html
http://www.ietf.org/rfc/rfc3987.txt
http://www.w3.org/TR/owl-ref/
http://sweetrules.projects.semwebcentral.org/

[Gro04a] B. Grosof. Hypermonotonic reasoning: Unifying non-
monotonic logic programs with first order logic. In
Workshop on Principles and Practice of Seman-
tic Web Reasoning (PPWSR04), September 2004.
http://www.mit.edu/~bgrosof/#HypermonFromPPSWR04InvitedTalk.

[Gro04b] B. Grosof. Representing e-commerce rules via situ-
ated courteous logic programs in ruleml. Electronic
Commerce Research and Applications, 3(1):2–20, 2004.
http://www.mit.edu/~bgrosof/#ecra-sclp-ruleml.

[Hal] The Halo project. Web site. http://www.projecthalo.com/.

[Hay04] P. Hayes. Rdf model theory. Technical report, W3C, February 2004.
W3C Recommendation. http://www.w3.org/TR/rdf-mt/.

[HPSB+04] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley,
Said Tabet, Benjamin Grosof, and Mike Dean. SWRL:
A semantic web rule language combining OWL and
RuleML. Member Submission 21 May 2004, W3C, 2004.
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

[KLP+04] M. Kifer, R. Lara, A. Polleres, C. Zhao U. Keller, H. Lausen, and
D. Fensel. A logical framework for web service discovery. In ISWC
2004 Semantic Web Services Workshop. CEUR Workshop Proceed-
ings, November 2004.

[KLW95] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-
oriented and frame-based languages. Journal of ACM, 42:741–843,
July 1995.

[Llo87] J.W. Lloyd. Foundations of Logic Programming (Second Edition).
Springer-Verlag, 1987.

[LMS05] P. Leach, M. Mealling, and R. Salz. A universally unique identifier
(uuid) urn namespace. Technical report, Internet Engineering Task
Force, July 2005. http://www.ietf.org/rfc/rfc4122.txt.

[MBH+04] David Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott,
S. McIlraith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne,
E. Sirin, N. Srinivasan, and K. Sycara. Owl-s: Semantic markup
for web services. Technical report, W3C, November 2004. W3C
Member Submission. http://www.w3.org/Submission/OWL-S/.

[MMW07] A. Malhotra, J. Melon, and N. Walsh. Xquery 1.0 and xpath 2.0
functions and operators. Technical report, W3C, January 2007.
http://www.w3.org/TR/xpath-functions/.

65

http://www.mit.edu/~bgrosof/#HypermonFromPPSWR04InvitedTalk
http://www.mit.edu/~bgrosof/#ecra-sclp-ruleml
http://www.projecthalo.com/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
http://www.ietf.org/rfc/rfc4122.txt
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/TR/xpath-functions/

[MW80] D. Maier and D.S. Warren. Incorporation computed relations in
relational databases. Technical Report 80/17, Department of Com-
puter Science, SUNY at Stony Brook, December 1980.

[NS97] N.Lindenstrauss and Y. Sagiv. Automatic termination analysis of
logic programs. In Int’l Conference on Logic Programming, 1997.

[Ont] Ontoprise, GmbH. Ontobroker. http://www.ontoprise.com/.

[PBK08] A. Polleres, H. Boley, and M. Kifer. RIF Datatypes and built-
ins. W3C Working Draft. http://www.w3.org/TR/rif-dtb/, July
2008.

[Per85] D. Perlis. Languages with self-reference i: Foundations. Artificial
Intelligence, 25:301–322, 1985.

[VRS91] A. Van Gelder, K.A. Ross, and J.S. Schlipf. The well-founded se-
mantics for general logic programs. Journal of ACM, 38(3):620–650,
1991.

[WGK+09] H. Wan, B. Grosof, M. Kifer, P. Fodor, and S. Liang. Logic pro-
gramming with defaults and argumentation theories. In Int’l Con-
ference on Logic Programming, July 2009.

[YK03a] G. Yang and M. Kifer. Inheritance in rule-based frame systems:
Semantics and inference. Journal on Data Semantics, 2800:69–97,
2003.

[YK03b] G. Yang and M. Kifer. Reasoning about anonymous resources and
meta statements on the Semantic Web. Journal on Data Semantics,
LNCS 2800, 1:69–98, September 2003.

[YKWZ08] G. Yang, M. Kifer, H. Wan, and C. Zhao. FLORA-
2: User’s manual. The FLORA-2 Web Site, 2008.
http://flora.sourceforge.net/docs/floraManual.pdf.

66

http://www.w3.org/TR/rif-dtb/
http://flora.sourceforge.net/docs/floraManual.pdf

	Introduction
	Acknowledgments
	Typography

	The SILK Language
	Overview of SILK
	Basic Definitions
	Horn Rules
	Queries
	Persistent Queries

	The Monotonic Lloyd-Topor Layer
	The NAF Layer
	The Nonmonotonic Lloyd-Topor Layer
	The Courteous Layer
	Rule Labels
	Classical Negation
	Prioritization Predicate
	Exclusion
	Cancellation
	Omni-directional rule sets

	The Production Layer
	Procedural Attachments

	The HiLog Layer
	The Equality Layer
	The Frames Layer
	Reification
	Skolemization
	Aggregation
	SILK and XML Schema Data Types
	Overview of the Semantics of SILK
	SILK Predicates
	Querying External Data Sources
	Built-ins
	External Actions
	Logging
	List of All SILK Predicates

	SILK Grammars
	SILK Human-Readable Grammar
	Restrictions for SILK Layers
	SILK LL(k) Grammar
	SILK Meta Model
	SILK Java API

	SILK Conventions
	SILK Media Type

	Additional Features for SILK

	SILK FOL
	Overview of SILK FOL
	SILK FOL Syntax
	Overview of the Semantics of SILK FOL
	Hypermonotonic Mapping: Combining SILK and SILK FOL
	Parsing SILK FOL
	Additional Features for SILK FOL

	References

