Note to other teachers and users of these slides: We would be delighted if you found our
material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify
them to fit your own needs. If you make use of a significant portion of these slides in your own
lecture, please include this message, or a link to our web site: hitp://cs224w.Stanford.edu
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J.You, R.Ying, J. Leskovec. , NeurlPS 2020

Key Questions for GNN Design

GNN architectural design:

How to find a good GNN design for a specific GNN task?
Important but challenging:

Domain experts want to use SOTA GNN on their specific
tasks, however...

There are tons of possible GNN architectures
GCN, GraphSAGE, GAT, GIN, ...

Issue: Best design in one task can perform badly for another task
Redo hyperparameter grid search for each new task is NOT feasible

Topic for today:

Study for the GNN design space and task space

GraphGym, a powerful platform for exploring different
GNN designs and tasks

12/6/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 3


https://arxiv.org/pdf/2011.08843.pdf

Background: Terminology

12/6/23

Design: a concrete model instantiation
E.g., a 4-layer GraphSAGE
Design dimensions characterize a design
E.g., the number of layers L € {2, 4, 6, 8}
Design choice is the actual selected value in the
design dimension
E.g., the number of layers L =2
Design space consists of a Cartesian product of
design dimensions
Task: A specific task of interest

E.g., node classification on Cora, graph classification on
ENZYMES
Task space consists of all the tasks we care about

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs



Recap: GNN Design Space

Intra-layer Design:

GNN Layer = Transformation + Aggregation
 We propose a general instantiation under this perspective

Intra-layer Design: 4 dims

I —— v 5

T I ------- 3 Linear

v

BatchNorm GN N
v i .
Dropout . Transformation
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Activation
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Recap: GNN Design Space

Inter-layer Design
 We explore different ways of organizing GNN layers

Intra-layer Design: 4 dims

Inter-layer Design: 4 dims

e Yoo e g
: Linear i MLP Layer Pre-
2 v process
BatchNorm MLP Layer layers
+ "".'_'_'_'_'_'_'_'_'_¢'__'__:__'__:__'__':_'__:__'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_
Dropout GNN Layer |: Layer .
2 N R |} connectivity
ACtiVatiOn # ............
v GNN Layer |
Aggregation ¢‘.::::::::::::::.§ Message
________________ +"_"""""" GNN Layer passing
; layers
Learning Configuration: 4 dims :::::::::::::;&:—?':':':"_:'_":::::::::::::::::::::
Batch size . | MLP Layer Post-
Learning rate v process
Optimizer i | MLP Layer layers
Training epochs S — N P —
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. Pre-process layers:

~ Important when expressive node
. feature encoder is needed

. E.g., when nodes are images/text

Skip connections:
. Improve deep GNN'’s performance

. Post-process layers:

. Important when reasoning or
. transformation over node

. embeddings are needed

E.g., graph classification,
knowledge graphs



Recap: GNN Design Space

Intra-layer Design: 4 dims Inter-layer Design: 4 dims

o Yoo L s
! Linear . | MLP Layer Pre-
\ 2 v process . . .
BatcllNorm i [wrlwer | es i Learning configurations
Dropout | | GNN{ """ Laver | * Often neglected in
gl B N KT | P .
Actvaiion | | e ~ current literature
vy i | GNNLayer |: . » But we found they have
Aggregation e b.::::::::::::::; Message . .
A AP I TN | B ot high impact on
: Learning Configuration: 4 dims :::::::::::::;b_.:"_:'_"_::"_::"_':‘_:::::::::::::::::.‘ pe rforma nce
E Batch size E MLP Layer Post-
. Learning rate . Y process
. Optimizer . MLP Layer layers
. Training epochs S ¥
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Summary: GNN Design Space

Intra-layer Design: 4 dims Inter-layer Design: 4 dims
® el e el e
[ ]

= OQOverall: A GNN design space
process |

- layers
= [ntra-layer design A e el B L S
. 2 N B .

- - . A Layer
Batch Normalization Dropout Activation Aggregation ! NN  connectivity |
True, False False, 0.3,0.6 RELU, PRELU, SWISH MEAN, MAX, SUM :' =.“ iﬁ '
u Inte r'layer dESIgn P i i A © Message
Ny e e? H i H
ase | passing
Layer connectivity Pre-process layers Message passing layers Post-precess layers Learning Configuration: 4 dims -::--:-:; Commmmrmnd T
STACK, SKIP-SUM, SKIP-CAT 1,2,3 2,4,6,8 1,2,3 Batch size Post- :
. : . Learning rate process !
| :

. . L. .. Training epochs
Batch size  Learning rate Optimizer = Training epochs

16,32,64 0.1,0.01,0.001 SGD, ADAM 100, 200, 400

= |In total: 315K possible designs

=  QOur Purpose:
= We don’t want to (and we cannot) cover all the possible designs

= A mindset transition: We want to demonstrate that studying a design
space is more effective than studying individual GNN designs
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A General GNN Task Space

Categorizing GNN tasks

Common practice: node / edge / graph level task

Reasonable but not precise

Node prediction: predict clustering coefficient vs. predict a
node’s subject area in a citation networks — completely different
task

But creating a precise taxonomy of GNN tasks is very
hard!

Subjective; Novel GNN tasks can always emerge
Our innovation: a quantitative task similarity
metric

Purpose: understand GNN tasks, transfer the best GNN
models across tasks

12/6/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 9



A General GNN Task Space

Quantitative task similarity metric

1) Select “anchor” models (M, ..., M<)

2) Characterize a task by ranking the performance of
anchor models

3) Tasks with similar rankings are considered as similar

Task Similarity Metric

Anchor Model Similarity
Performance ranking to Task A
TaskB | M, | My | M, | M, | M, 0.8 is similar to Task B
TaskC | Ms | My | My | M3 | My -0.4 is not similar to Task C

How do we select the anchor models?

12/6/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 10



A General GNN Task Space

Selecting the anchor models

1) Select a small dataset Sorted by
E.g., node classification on Cora performance
2) Randomly sample N models from our i M,
design space, run on the dataset M,
E.g., we sample 100 models M;
3) Sort these models based on their N = 100
performance: evenly select M models as models
the anchor models, whose performance "
10
range from the worst to the best M,
E.g., we sample 12 models in our experiments _ M,,

Goal: Cover a wide spectrum of models:
A bad model in one task could be great

for another task

12/6/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 11



A General GNN Task Space

We collect 32 tasks: node / graph classification

Task name (We include link prediction results in the Appendix)

node-AmazonComputers-N/A-N/A =~
node-AmazonPhoto-N/A-N/A
node-CiteSeer-N/A-N/A e '
node-CoauthorCS-N/A-N/A > 6 Real-world node classification tasks
node-CoauthorPhysics-N/A-N/A
node-Cora-N/A-N/A
node-scalefree-clustering-pagerank
node-scalefree-const-clustering

node-scalefree-const-pagerank 12 Synthetic node classification tasks

node-scalefree-onehot-clustering

node-scalefree-onehot-pagerank P red | Ct no d e p 'O p e rt | es.

node-scalefree-pagerank-clustering

node-smallworld-clustering-pagerank — Clu S‘tenng Coeﬁ|C|ent

node-smallworld-const-clustering
node-smallworld-const-pagerank _
node-smallworld-onehot-clustering Pag € R an k
node-smallworld-onehot-pagerank
node-smallworld-pagerank-clustering

graph-PROTEINS-N/A-N/A
graph-BZR-N/A-N/A
raph-COX2-N/A-N/A H 5 :

B oph DDNA-N/A > 6 Real-world graph classification tasks
graph-ENZYMES-N/A-N/A
graph-IMDB-N/A-N/A
graph-scalefree-clustering-path
graph-scalefree-const-path
graph-scalefree-onehot-path

graph-scalefree-pagerank-path 8 Synt h et i C g I’ap h C I aSS iﬁ Cat i O n taS kS

graph-smallworld-clustering-path -

graph-smallworld-const-path P red | Ct g fa p h p ro pe rt | es.

graph-smallworld-onehot-path

graph-smallworld-pagerank-path - AVG rag e p at h | e N gt h

graph-ogbg-molhiv-N/A-N/A _J
12/6/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 12
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Evaluating GNN Designs

Evaluating a design dimension:

“Is BatchNorm generally useful for GNNs?”
The common practice:

(1) Pick one model (e.g., a 5-layer 64-dim GCN)
(2) Compare two models, with BN = True / False
Our approach:

Note that we have defined 315K (models) *
32 (tasks) = 10M model-task combinations

(1) Sample from 10M possible model-task
combinations

(2) Rank the models with BN = True / False
How do we make it scalable & convincing?

12/6/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 13



Evaluating GNN Designs

12/6/23

Evaluating a design dimension: Controlled

random search

a) Sample random model-task configurations,

perturb BatchNorm = [True, False]

Here we control the computational budget for all

the models

(a) Controlled Random Search

GNN Design Space GNN Task Space
BatchNorm | Activation | ... | Message layers | Layer Connectivity | Task level dataset

True relu 8 skip_sum node CiteSeer
False relu 8 skip_sum node CiteSeer
True relu 2 skip_cat graph BZR
False relu 2 skip_cat graph BZR
True prelu 4 stack graph scale free
False prelu .. 4 stack graph scale free

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs
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Evaluating GNN Designs

b) Rank BatchNorm = [True, False] by their
performance (lower ranking is better)

c) Plot Average / Distribution of the ranking of
BatchNorm = [True, False]

(b) Rank Design Choices by Performance (c) Ranking Analysis
GNN Design Space Experimental Results & 2
BatchNorm Val. Accuracy | Design Choice Ranking ?
True 0.75 1 £2
False 0.54 2 g 1 |
- Y False True
True 0.88 1 (atie) > 52
False 0.88 1 (a tie) £5 l
32
Q =
<2
True 0.89 1 0y ,
False True
False 0.36 2 Batch Normalization

Summary: Convincingly evaluate any new design
dimension, e.g., evaluate a new GNN layer we propose

12/6/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 15



Results 1: A Guideline for GNN Design

Certain design choices exhibit clear advantages
Intra-layer designs:

Explanation: Explanation:
GNNs are hard to optimize This is our new finding!
5 S g : ppemssnne : N e
o : Pl 2t | :
3 | IR
e L : : - - : :
% 1 : ] T by . T T = g
Q; _2 0.6 3. prelu relu swish 3 max mean
O O H . :
0= ) : :
32 25 21
Ey . 1 1 5
False : : . : 0.6 :_prelu  : relu swish max  mean:
Batch Normalization Dropout Activation Aggregatlon
Explanation: Explanation:
GNNs experience Sum is the most
underfitting more often expressive aggregator
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Results 1: A Guideline for GNN Design

Certain design choices exhibit clear advantages

Inter-layer designs

Optimal number of layers is hard to decide
Highly dependent on the task

T L L Runl s

2 4 68 i: skipcat skipsum _stack

Average

Accuracy Ranking
Distribution
- N w —
l S
s N w S -
N

1 2 3 L 1 2 3 ] 2 4 6 8 1 skipcg_t__;skip'sum stack
""""""" Pré-process layers™ " Post-process Tayers T Meéssage passing layers” TLayer connectivity
Explanation:

Skip connection enable
hierarchical node
12/6/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs representation 17



Results 1: A Guideline for GNN Design

Certain design choices exhibit clear advantages
Learning configurations

Optimal batch size and learning rate is hard to

decide
sfdanadundannanahuannnnnnnnnnnshannnnsannnnnnnnsalannnnatannnnshannunnnnnnnnnnnnsn . LLXLELELRLLLEY . gremnRmRmRREEs .
52 2 P27 ; 2 : :
g 1 T T 1‘ T T g 1' T E ! E
: 16 32 64 0.001 0.01 0.1 : 100 200 : 400 -
: 3 31 : 34 H :
1 1 1 1' ! g 1 s : 1 E T g
: 16 32 . 64 0.001 0:01 0.1 : = adam P sgd 100 o 200 : 400
CA—— Batch size........ccccveevenee, Learning rate ... ... Qpttmizer Training epachs.....:

Explanation:
Adam is more robust
More training epochs is better

12/6/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 18



Results 2: Understanding GNN Tasks

Best GNN designs in different tasks vary
significantly
Motivate that studying a task space is crucial

g
N

£ : -
= : .
5 E l | 2—.
o | :
o i h : :
> 4 : : 1
< 1: T T T 1‘ H T T T 1‘ T H T .
: max mean ' sum max mean - sum max mean Sum
""""" Adgregation Agagrégation Aggregation
Dataset: BZR Dataset: PROTEINS Dataset: smallworld
2] +
1 1 !: $ . 15"+ 3 T T 1- T — L :%If‘l .
2 4 6: 8 i 2 #4 6 8 2 4 6: 8
Message passing layers MESSage passing layers Message passing’layers
Dataset: Cora Dataset: IMDB Dataset: scalefree
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Results 2: Understanding GNN Tasks

Build a GNN task space

Recall how we compute task similarity

Anchor Model Similarity

to Task 4

Proposed task similarity (computed from 12 models)
node-AmazonComputers-N/A-N/A-
node-AmazonPhoto-N/A-N/A-

node-CiteSeer-N/A-N/A-
node-CoauthorCS-N/A-N/A-
node-CoauthorPhysics-N/A-N/A-
node-Cora-N/A-N/A-
graph-PROTEINS-N/A-N/A-
graph-BZR-N/A-N/A-
graph-COX2-N/A-N/A-
graph-DD-N/A-N/A-
graph-ENZYMES-N/A-N/A-
graph-IMDB-N/A-N/A-|
graph-scalefree-clustering-path -
graph-scalefree-const-path-
graph-scalefree-onehot-path -
graph-scalefree-pagerank-path -
graph-smallworld-clustering-path -
graph-smallworld-const-path-
graph-smallworld-onehot-path -
graph-smallworld-pagerank-path-
node-scalefree-clustering-pagerank -
node-scalefree-const-clustering -
node-scalefree-const-pagerank -
node-scalefree-onehot-clustering-
node-scalefree-onehot-pagerank-
node-scalefree-pagerank-clustering -
node-smallworld-clustering-pagerank-
node-smaIIworld-const-clustering—
node-smallworld-const-pagerank-
node-smallworld-onehot-clustering-
node-smallworld-onehot-pagerank-
node-smallworld-pagerank-clustering-

We compute
pairwise
similarities
between all GNN
tasks

node-AmazonComputers-N/A-N/A -

12/6/23

node-CiteSeer-N/A-N/A -
node-CoauthorCS-N/A-N/A-

node-AmazonPhoto-N/A-N/A -
node-CoauthorPhysics-N/A-N/A-

Performance ranking

o Task B

Ms | My | M, 0.8

-0.75

Task C

| | -0.50

-0.4

My | My | Ms

-0.25
-0.00

RN

L

||
EEEETE

--0.25

||
»

| | --0.50

B Pearson correlation: 0.94

| |
||
r

--0.75

||
|
| |

-1.00

-
| |

| |
H N
|

L B

-

.
L
|

pageranﬁ
X

graph-DD-N/A-N/A-

node-Cora-N/A-N/A -
graph-ENZYMES-N/A-N/A -

graph-PROTEINS-N/A-N/A -
graph-BZR-N/A-N/A -

graph-COX2-N/A-N/A -
graph-IMDB-N/A-N/A -

graph-scalefree-clustering-path -
Task similarity (all models)

graph-scalefree-const-path -
graph-scalefree-onehot-path -
graph-scalefree-pagerank-path -
graph-smallworld-clustering-path -
graph-smallworld-onehot-path -

graph-smallworld-const-path -
graph-smallworld-pagerank-path -

node-scalefree-const-clustering -
node-scalefree-const-pagerank -
node-scalefree-onehot-pagerank -

node-smallworld-const-

Task similarity
computation is
cheap:

Using 12 anchor
models is a good
approximation!

de-scalefree-pagerank-clustering -l

node-scalefree-onehot-clustering -

node-smallworld-clustering-pagerank -
node-smallworld-const-clusterin
node-smallworld-onehot-pageran

node-smallworld-onehot-clusterin

T
-0.5

node-scalefree-clustering-pagerank -
node-smallworld-pagerank-clustering -

[}
c
e-

-

Format of tasks: Level-Dataset-Feature-Label

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

T
0.0
Task similarity (12 models)

05 10

20




Results 2: Understanding GNN Tasks

GNN task space is informative

Group 1

Proposed task similarity (computed from 12 models)

node-AmazonComputers-N/A-N/AE
node-AmazonPhoto-N/A-N/A=
node-CiteSeer-N/A-N/A%
node-CoauthorCS-N/A-N/A=
node-CoauthorPhysics-N/A-N/Ax
node-Cora-N/A-N/A%
graph-PROTEINS-N/A-N/A=
graph-BZR-N/A-N/A%
graph-COX2-N/A-N/A=
graph-DD-N/A-N/A-
graph-ENZYMES-N/A-N/A-
graph-IMDB-N/A-N/A-]
graph-scalefree-clustering-path -
graph-scalefree-const-path -
graph-scalefree-onehot-path -
graph-scalefree-pagerank-path-
graph-smallworld-clustering-path -
graph-smallworld-const-path-
graph-smallworld-onehot-path-]
raph-smallworld-pagerank-path-
node-scalefree-clustering-pagerank -
node-scalefree-const-clustering -
node-scalefree-const-pagerank -
node-scalefree-onehot-clustering-
node-scalefree-onehot-pagerank-
node-scalefree-pagerank-clustering -
node-smallworld-clustering-pagerank-
node-smalIworld-const—clusterinﬁ—
node-smallworld-const-pagerank-
node-smallworld-onehot-clustering-
node-smallworld-onehot-pagerank-
node-smallworld-pagerank-clustering-

Pairwise similarities
between GNN tasks

node-Cora-N

node-CiteSeer-N/A-N/A -
graph-PROTEINS-N

node-CoauthorCS-N/A-N/A -

node-AmazonPhoto-N/A-N/A -
node-CoauthorPhysics-N

node-AmazonComputers-N/A-N/A -

Format of tasks: Level-Dataset-Feature

12/6/23

e un

graph-BZR-N
graph-COX2-N

SIS

‘1.00
-0.75

-Label

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Group 1:

Tasks rely on feature information
Node/graph classification tasks,
where input graphs have high-
dimensional features

| | -0.50
| Ll | | : 1
: = e (Coragraph has 1000+ dim
B | | H -0.00
Bammn CoEE o Wm0 node feature
BN N ;| --050
| .
u | || » | -075
N i 'ﬁtw
| | Bl N -
H n H
| B ] .| =
L ||
EE BN Em :
-lnlnlndnhnlni-lndnh-|-i-lndnhnln!-lndnhnlninlnx Group 2:
TLSELD LI n ety . .
zZzZZ CECOCE®T @S OT
FFey i EEEH L Tasks rely on structural information
ZZZECccEECccSTEo0I0IRINS®
YRR ot el el
UCHg o puob RERESSEPRsETL Nodes have few features
SRNLo0L6525800755885855¢
o T R E52528846822502 8 dicti hiehlv d d
PLERE L i Predictions are highly dependent on
§ 3eastsleLS83RE0TR=20
= T [} JoR X _EEENNE
> §oBRIERIRidiassboEEs graph structure
> °5 TogftEEerEissy ot - ici
A * Predicting clustering coefficients
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Results 2: Understanding GNN Tasks

GNN task space is informative

Group 2 Group 1 Dataset

® AmazonComputers

® AmazonPhoto
CiteSeer
CoauthorCS

(%3 CoauthorPhysics

0.5 o Cora

PROTEINS

% ¢ BZR

004 @ COX2

DD

A' 7 ENZYMES

Bl P B C IMDB

scalefree

L) o
/ L) [ ) ® smallworld
-1.0 P

Task-level

Similar tasks have similar 5577 7 7 e Nl
best architectures PCADIm 1 % Graph-level

Task Space

PCA Dim 2

PCA

Best GNN Designs Found in Different Tasks

B I Pre layers | MP layers | Post layers | Gonnectivity | AGG
:| Task A 2 8 2 skip-sum | sum
:| Task B 1 8 2 skip-sum | sum

12/6/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 22



Results 3: Transfer to Novel Tasks

Case study: generalize best models to unseen
OGB ogbg-molhiv task:

ogbg-molhiv is unique from other tasks: 20x
larger, imbalanced (1.4% positive) and requires
out-of-distribution generalization

Concrete steps for applying to a novel task:
Pearson correlation: 0.78

Step 1: Measure 12 anchor model performance ™| , Task4
on the new task " 4

Step 2: Compute similarity between the new
task and existing tasks

I
oo
]

o
»
]

o
SN
1

©
N
h

Step 3: Recommend the best designs from
existing tasks with high similarity
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Task similarity with ogbg-molhiv

Ranking of best design after task
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Results 3: Transfer to Novel Tasks

Our task space can guide best model transfer
to novel tasks!

transfer to ogbg-molhiv

*Task B
05 00 05 10 .
Task similarity with ogbg-molhiv PreVlOUS SOTA: 0. 771

Findings:
We pick 2 tasks: Transfer the best model from Task A achieves
Task A: Similar to OGB SOTA on OGB
Task B: Not similar to OGB Transfer the best model from Task B performs
badly on OGB
o Pearson correlation: 0.78
2107 | Task A Task A: graph- Task B: node-
;O.S_ * scalefree-const-path | CoauthorPhysics
%OG_ in Ot?rei:izzligace (1, 8, 3, skipcat, sum) | (1, 4, 2, skipcat, max)
§ Task Similarity
7] with ogbg-molhiv 0.47 -0.61
é’,o.z Performance after 0.785 0.736
g

I
=}
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GNN Design Space: Summary

Systematic investigation of:
General guidelines for GNN design
Understandings of GNN tasks
Transferring best GNN designs across tasks
GraphGym: Easy-to-use code platform for GNN

(a) GNN Design Space (b) GNN Task Space (c) Controlled Random Search
Intra-layer Design: 4 dims Inter-layer Design: 4 dims Task Space Task format: Level-Dataset GNN Design Space GNN Task Space
@® node-AmazonComputers T
_____________________________ ® node-AmazonPhoto BatchNorm| Act |...|MP layers|Connectivity| level | dataset
H ® N 3 A
MLP Laver ! ; 104 node-CiteSeer True relu |... 8 skip_sum | node | CiteSeer
y Pre- 1 ® node-CoauthorCS False |[relu]... 8 skip_sum | node | CiteSeer
process P node-CoauthorPhysics n
BatchNorm MLP Layer layers | o °°7 node-Cora True relu |... 2 skip_cat | graph BZR
PoE ° graph-BZR False relu |... 2 skip_cat | graph BZR
< 004 ® graph-COX2
Layer g graph-PROTEINS
connectivity { | A graph-DD (d) Rank Design Choices (e) Ranking Analysis
: 05 S B C graph-ENZYMES by Perf
: - ° graph-IMDB y erformance 2
y ad 9o e graph-scalefree Experimental Results S
essage graph-smallworld " - ©
passingg L — T 3 T T ® node-scaleires Val. Design Qhowe g g
PCA Dim 1 ® node-smallworld Accuracy Ranking £ I
Iayers 0.75 1 & False True
; : Best GNN Designs Found in Different Tasks : 7 > 3_52
Batch size MLP Layer Post- Pre layers | MP layers|Post layers |Connectivity| AGG 828 ot g E
Learning rate process | [Task4 2 8 2 skip-sum [ sum . (a tie) 3
Optimizer i [ MLP Layer layers | [Task B 1 8 2 skip-sum | sum 0.86 1 (atie) R e
Training epochs T i |Task € 2 6 2 skip-cat | mean Batch Normalization
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Pre-Training
Graph Neural Networks



Graph ML in Scientific Domains

Chemistry: Molecular graphs

Molecular property prediction Our runniD
example today
f( m) = toxic?

Biology: Protein-protein association graphs

Protein function prediction

f( «5@- ) = biological activity?

12/6/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs



GNNs for Graph Classification

GNNs obtain an embedding of an entire graph
by following two steps

Iteratively aggregate neighboring information to
obtain node embeddings

Pool node embeddings to obtain a graph

embedding

Iterative neighbor I w  toxic?
aggregatlon
Pool |

Molecule |

O = o u-={>- —
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GNNs for Graph Classification

Node embeddings capture local
neighborhood structure

The embedding of an entire graph is a global
aggregation of such node embeddings

Globally-
Capture local aggregate

neighborhood local features
structure 1

Molecule |
I
@7\\ —> ﬂ =) | . :
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Challenges of Applying ML

Two fundamental challenges in applying ML
to scientific domains
1. Scarcity of labeled data

Obtaining labels requires expensive lab
experiments

- ML models overfit to small training data
2. Out-of-distribution prediction

Test examples tend to be very different from
training examples

- ML models extrapolate poorly
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Challenges for Deep Learning (1)

Deep learning models have a lot parameters
to train (e.g., in the order of millions).
#f(Labeled training data) << #(Parameters)
Deep learning models are extremely prone to
overfitting on small labeled data.
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Challenges for Deep Learning (2)

Deep learning models extrapolate poorly

12/6/23

Models often make predictions based on spurious
correlations in a dataset [Sagawa et al. ICML 2020]

Ex) Image classification between polar bear” and

“brown bear”
Adapted from

During training: <l P8 Wikipodia

Most “polar bears” have the snow background
Most “brown bears” have the grass background

Model can learn to make prediction based on the image
background, rather than the animal itself.

At test time, what if we see “polar bear” on the grass?
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Injecting Domain Knowledge

Goal: Improve model’s out-of-distribution
prediction performance even with limited data.
Key idea: Inject domain knowledge into a model
before training on scarcely-labeled tasks!

The model already knows the domain knowledge
before training on data

So that the model can

Generalize well without many task-specific labeled data

Extract essential (non-spurious) pattern that allows
better extrapolation.
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Effective Solution: Pre-Training

We pre-train a model on relevant tasks, where
data is abundant.

After pre-training, the model parameters already
contain domain knowledge.
For downstream tasks (what we care about,
typically with small #labeled data)

We start from the pre-trained parameters and fine-

tuning them.

Pre-training Fine-tuning on
Raw Output downstream tasks
input embedding

|:|» Moedel »|:| |:|» Model »|:|

Bpre
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Pre-Training is Successful

Pre-training has been hugely successful in
computer vision and natural language
processing.

Pre-training improves label-efficiency.

Pre-training improves out-of-distribution
performance [Hendrycks et al. ICML 2019]

Pre-training is a powerful solution to the two
ML challenges in scientific applications

Scarce labels

Out-of-distribution prediction
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= 0= Hu et al. ICLR 2020
Pre-training GNNs

Let’s consider pre-training GNNs!
We design GNN pre-training strategies and
systematically investigate

Q1. How effective is pre-training GNNs?

Q2. What is the effective pre-training strategy?
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How Effective is Pre-training GNNs?

Let’s think about molecular property prediction
for drug discovery.

Naive strategy
Multi-task supervised pre-training on relevant labels.

Diverse labels Toxicity A?
from chemical database .
Toxicity B?
Iterative neighbor .
aggregation
Pool | Bionctivity A?
Molecule \ ioactivity A~
10 Bioactivity B?

@\\'::)Q_\'::)' ||I
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Experimental Setting

12/6/23

Molecule classification

Task: Binary classification. ROC-AUC as metric

((_oo) =01

Supervised pre-training data

1310 diverse binary bioassays annotated over ~450K
molecules

Downstream task (what we care about!)

8 molecular classification datasets (relatively-small, 1K—
100K molecules)

Data split: Scaffold (test molecules are out-of-
distribution)

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs
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How Effective is Pre-training GNNs?

Naive strategy:
Multi-task supervised pre-training on relevant labels.

= Limited performance improvement on downstream
tasks. Often leads to negative transfer

Molecule classification performance

16.0 =«
140 - ® : Naive

122 ' strategy
8.0 +

6.0 =

pre-training

4.0

ROCAUC
improvement over no

2.0 «

0
Non pre-trained

GNNs

Downstream datasets
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What is the Effective Strateqy?

Key idea: Pre-train both node and graph

embeddings.
- GNN can capture domain-specific knowledge of

both local and global structure
Pre-training on
graph labels Toxicity A?

Pre-training on node labels Capture TOX.icity B?
A Global I
Capture local structure l Bioactivity A?
neighborhood
J | | Bioactivity B?
structure 0 11 .

©—\\ol={>u —

11 11
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What is the Effective Strateqy?

Key idea: Pre-train both node and graph
embeddings.

Embedding illustration  Naive strategies

(a.iii) Node-level + (a.i)  Node-level (a.ii)  Graph-level

Graph-level pre-training pre-training only pre-training only
1 9
()
2 0: X 2 @ @ OOO 'e) 0.
o g O A @ A
g : ” 2 | 4
pd
iPooling lPooling Pooling
2 4 3
JPrT 3
(O] o" o B \ /.-
% ++ ,,"" — % =l++ +.+‘+"' =
< Lo*° - © == || . [ | s
§ v, © (X v/
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Proposed Pre-Training Methods

Self-supervised

(No need for

external labels) Node-level | Graph-level

: ~ ) || Supervised
AU Attribute AFt)tribute
prediction . Masking ) |\ Prediction

a B
Structure Context z:‘ﬂﬁ;:@'
prediction &Pl’edICtlonJ Prediction
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Attribute Masking: Algorithm

Mask node attributes

Use GNNs to generate node embeddings.
Use the embeddings to predict masked
attributes.

Input graph GNN

» 5 2 - A
0
Cm

> GNN

(C,N, 0,8, ..}
X = Masked node
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Attribute Masking: Intuition

Intuition
Through solving the masked attribute
prediction task, a GNN is forced to learn
domain knowledge, .e.g., chemical rules.

Input graph

0
Cm

> GNN

(C,N,0,S, ..}
X = Masked node
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Context Prediction: Algorithm

For each graph, sample one center node.
Extract neighborhood and context graphs.
Use GNNs to encode neighborhood and context

graphs into vectors.
Maximize/minimize the inner product between

true/false (neighborhood, context) pairs.

Input graph

o
Cm
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9 = Center node
O = Context anchor nodes
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Context Prediction: Intuition

Intuition
Subgraphs that are surrounded by similar
contexts are semantically similar.

In natural language processing, this is called
distributional hypothesis, and is exploited in the
word2vec model [Mikolov et al. NIPS 2013].

Input graph

¢}
Cm
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Supervised Attribute Prediction

Multi-task supervised training on many
relevant labels.

Pre-training on
graph labels Toxicity A?

Iterative neighbor Toxicity B?
aggregation I :

A Bioactivity A?
| Bioactivity B?

N

. 10
@\\Ol:{)u-( >—«'L“ = —
i ﬂ |
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Overall Strategy

1. Node-level pre-training
2. Graph-level pre-training
3. Fine-tuning on downstream tasks

1 Self-supervised Downstream
node-level pre-training )
A it Node pre-train {tasm }
..... 3 .
GNN Fine-tune ¢
2 Supervised graph-level

pre-training

Downstream
task N

Toxicity A?  Bjoactivity A?

i

Graph pre-train

Toxicity B?  Bioactivity B?
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Results of Our Strategy

Avoids negative transfer.
Significantly improve the performance.

Molecule classification performance

16.0 »
14.0 4 b+ ®

. ® : Our strategy

. ® : Naive
strategy

pre-training

ROCAUC
improvement over no

Avoids negative transfer

Non pre-
. Q N X & 3 Q Q <
g?\;rlllesd & < S & ’ W N S

Downstream datasets
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Comparison of GNN models

When different GNN models are pre-trained,
the most expressive model (GIN) benefits the
most from pre-training.

Intuition: Expressive model can learn to
capture more domain knowledge than less
expressive models.

Chemistry Biology
Non-pre-trained | Pre-trained | Gain | Non-pre-trained | Pre-trained | Gain

04.8 £ 1.0 742 £1.5 | 494 |

GCN 68.9 72.2 +3.4 63.2+ 1.0 70.9 £ 1.7 | +7.7
GraphSAGE 68.3 70.3 +2.0 657+ 1.2 685+ 1.5 | +2.8
GAT 66.8 60.3 -6.5 68.2 + 1.1 67.8+3.6 | -04
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Pre-Training GNNs: Summary

GNNs have important applications in scientific
applications, but they present challenges of

Label scarcity

Out-of-distribution prediction
Pre-training is promising to tackle the challenges.
However, naive pre-training strategy gives sub-
optimal performance and even leads to negative
transfer.
Our strategy: Pre-train both node and graph
embeddings = Leads to significant performance
gain on downstream tasks.

12/6/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 51



CS224W: Wrap-Up
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Graphs and Relational Data
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Code Graphs Molecules 3D Shapes
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https://arxiv.org/abs/1503.00759
https://en.wikipedia.org/wiki/Triangle_mesh
https://www.researchgate.net/figure/Static-call-graph-for-Figure-1-Callsites-are-labeled-with-their-line-number-in-the-code_fig1_220751974
https://www.mdpi.com/2078-2489/1/2/60/htm
http://math.hws.edu/graphicsbook/c2/s4.html
https://www.ese.wustl.edu/~nehorai/research/genomic/grn.html

CS224W: Deep Learning in Graphs

Graph Regularization, Graph
convolutions e.g., dropout convolutions
ng
&

%Ob@g
Activation Q Q
function
/

A,

/ /
/
Predictions: Node labels,

New links, Generated
Input: Network graphs and subgraphs
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Models of Interest: Invariances
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The Bottom Line

12/6/23

There is exciting relational structure in many
many real-world problems

Molecules/Proteins as strings vs. graphs

Travel time duration over the map graph
Identifying and harnessing this relational
structure leads to better predictions

AlphaFold

Biomedicine

Recommender systems
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You learned a lot!

Theory:

Models, architectures, approaches
Practice:

Collab notebooks

Homeworks
Creative research:

Course project
The real-world use cases and applications
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What Next?

12/6/23

Project write-ups:
Thurs Dec. 14, Midnight (11:59PM) Pacific Time

No late days!
Courses:

CS246: Mining Massive Datasets (Spring)
Data Mining & Machine Learning for big data

(big==doesn’t fit in memory/single machine)
Fast clever algorithms for real-world problems

Distributed data processing frameworks:
MapReduce, Spark

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu
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Thank you, team!!!

Instructor Course Assistants
,,(.ﬂw"‘?: 3

41’

Aditya Agrawal

Jure Leskovec Xikun Zhang
Head CA

Guest Instructor

a

W

Matthew Jin Yunqi Li Tolu Oyeniyi Chenshu (Jupiter) Zhu

Joshua Robinson

Pratham Soni Anirudh Sriram

12/6/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 62



| am very proud of everyone!

You Have Done a Lot!!!
And (hopefully) learned a lot!!!

Answered questions and
proved many interesting results

Implemented a number of methods
And did excellently on the project!

Thank You for the
Hard Work!!!
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