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¡ GNN architectural design:
§ How to find a good GNN design for a specific GNN task?

¡ Important but challenging:
§ Domain experts want to use SOTA GNN on their specific 

tasks, however...
§ There are tons of possible GNN architectures

§ GCN, GraphSAGE, GAT, GIN, …
§ Issue: Best design in one task can perform badly for another task
§ Redo hyperparameter grid search for each new task is NOT feasible

¡ Topic for today:
§ Study for the GNN design space and task space
§ GraphGym, a powerful platform for exploring different 

GNN designs and tasks
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J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf


¡ Design: a concrete model instantiation
§ E.g., a 4-layer GraphSAGE

¡ Design dimensions characterize a design 
§ E.g., the number of layers L ∈ {2, 4, 6, 8}

¡ Design choice is the actual selected value in the 
design dimension
§ E.g., the number of layers L = 2

¡ Design space consists of a Cartesian product of 
design dimensions

¡ Task: A specific task of interest
§ E.g., node classification on Cora, graph classification on 

ENZYMES
¡ Task space consists of all the tasks we care about
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GNN
Transformation

Intra-layer Design:
GNN Layer = Transformation + Aggregation
• We propose a general instantiation under this perspective
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Inter-layer Design
• We explore different ways of organizing GNN layers

Pre-process layers:
Important when expressive node 
feature encoder is needed
E.g., when nodes are images/text

Post-process layers:
Important when reasoning or 
transformation over node 
embeddings are needed
E.g., graph classification, 
knowledge graphs

Skip connections:
Improve deep GNN’s performance
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Learning configurations
• Often neglected in 

current literature
• But we found they have 

high impact on 
performance
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§ Overall: A GNN design space
§ Intra-layer design

§ Inter-layer design

§ Learning configuration

§ In total: 315K possible designs

§ Our Purpose: 
§ We don’t want to (and we cannot) cover all the possible designs
§ A mindset transition: We want to demonstrate that studying a design 

space is more effective than studying individual GNN designs



¡ Categorizing GNN tasks
§ Common practice: node / edge / graph level task
§ Reasonable but not precise

§ Node prediction: predict clustering coefficient vs. predict a 
node’s subject area in a citation networks – completely different 
task

§ But creating a precise taxonomy of GNN tasks is very 
hard!
§ Subjective; Novel GNN tasks can always emerge

¡ Our innovation: a quantitative task similarity 
metric
§ Purpose: understand GNN tasks, transfer the best GNN 

models across tasks
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§ Quantitative task similarity metric
§ 1) Select “anchor”models (𝑀!, … ,𝑀")
§ 2) Characterize a task by ranking the performance of 

anchor models
§ 3) Tasks with similar rankings are considered as similar

§ How do we select the anchor models?

12/6/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 10

Anchor Model
Performance ranking

Similarity
to Task 𝐴

Task 𝐴 𝑀! 𝑀" 𝑀# 𝑀$ 𝑀% 1.0
Task 𝐵 𝑀! 𝑀# 𝑀" 𝑀$ 𝑀% 0.8
Task 𝐶 𝑀% 𝑀! 𝑀$ 𝑀# 𝑀" -0.4

Task Similarity Metric

Task 𝐴 is similar to Task 𝐵 
Task 𝐴 is not similar to Task 𝐶



§ Selecting the anchor models
§ 1) Select a small dataset 

§ E.g., node classification on Cora
§ 2) Randomly sample 𝑵 models from our 

design space, run on the dataset
§ E.g., we sample 100 models

§ 3) Sort these models based on their 
performance: evenly select 𝑴 models as 
the anchor models, whose performance 
range from the worst to the best
§ E.g., we sample 12 models in our experiments

§ Goal: Cover a wide spectrum of models: 
A bad model in one task could be great 
for another task
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𝑁 = 100 
models

𝑀!
𝑀"

Sorted by 
performance

…

𝑀!!
𝑀!"

𝑀#

𝑀!$



¡ We collect 32 tasks: node / graph classification
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6 Real-world node classification tasks

12 Synthetic node classification tasks
Predict node properties:
- Clustering coefficient
- PageRank

6 Real-world graph classification tasks

(We include link prediction results in the Appendix)

8 Synthetic graph classification tasks
Predict graph properties:
- Average path length



¡ Evaluating a design dimension:
§ “Is BatchNorm generally useful for GNNs?”

¡ The common practice: 
§ (1) Pick one model (e.g., a 5-layer 64-dim GCN)
§ (2) Compare two models, with BN = True / False

¡ Our approach:
§ Note that we have defined 315K models ∗
32 (tasks) ≈ 𝟏𝟎𝐌 model-task combinations

§ (1) Sample from 10M possible model-task 
combinations

§ (2) Rank the models with BN = True / False
¡ How do we make it scalable & convincing?
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¡ Evaluating a design dimension: Controlled 
random search
§ a) Sample random model-task configurations, 

perturb BatchNorm = [True, False]
§ Here we control the computational budget for all 

the models
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GNN Design Space GNN Task Space
BatchNorm Activation … Message layers Layer Connectivity Task level dataset

True relu … 8 skip_sum node CiteSeer
False relu … 8 skip_sum node CiteSeer
True relu … 2 skip_cat graph BZR
False relu … 2 skip_cat graph BZR

…
True prelu … 4 stack graph scale free
False prelu … 4 stack graph scale free

(a) Controlled Random Search



§ b) Rank BatchNorm = [True, False] by their 
performance （lower ranking is better）

§ c) Plot Average / Distribution of the ranking of 
BatchNorm = [True, False]

§ Summary: Convincingly evaluate any new design 
dimension, e.g., evaluate a new GNN layer we propose
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Experimental Results
Val. Accuracy Design Choice Ranking

0.75 1
0.54 2
0.88 1 (a tie)
0.88 1 (a tie)

0.89 1
0.36 2

(c) Ranking Analysis(b) Rank Design Choices by Performance
GNN Design Space

BatchNorm
True
False
True
False

True
False



¡ Certain design choices exhibit clear advantages
§ Intra-layer designs: 
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Explanation:
GNNs are hard to optimize

Explanation:
GNNs experience 
underfitting more often

Explanation:
This is our new finding!

Explanation:
Sum is the most 
expressive aggregator



¡ Certain design choices exhibit clear advantages
§ Inter-layer designs
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Optimal number of layers is hard to decide
Highly dependent on the task

Explanation:
Skip connection enable 
hierarchical node 
representation



¡ Certain design choices exhibit clear advantages
§ Learning configurations
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Optimal batch size and learning rate is hard to 
decide
Highly dependent on the task

Explanation:
Adam is more robust
More training epochs is better



¡ Best GNN designs in different tasks vary 
significantly
§ Motivate that studying a task space is crucial
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¡ Build a GNN task space

12/6/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 20

We compute
pairwise 
similarities 
between all GNN 
tasks

Anchor Model 
Performance ranking

Similarity
to Task 𝐴

Task 𝐴 𝑀! 𝑀" 𝑀# 𝑀$ 𝑀% 1.0
Task 𝐵 𝑀! 𝑀# 𝑀" 𝑀$ 𝑀% 0.8
Task 𝐶 𝑀% 𝑀! 𝑀$ 𝑀# 𝑀" -0.4

Recall how we compute task similarity

Task similarity 
computation is 
cheap:
Using 12 anchor 
models is a good 
approximation!



¡ GNN task space is informative
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Group 2: 
Tasks rely on structural information
Nodes have few features
Predictions are highly dependent on 
graph structure
• Predicting clustering coefficients

Group 1:
Tasks rely on feature information
Node/graph classification tasks, 
where input graphs have high-
dimensional features
• Cora graph has 1000+ dim 

node feature

Pairwise similarities 
between GNN tasks

Group 1

Group 2



¡ GNN task space is informative
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! " #

Best GNN Designs Found in Different Tasks
Pre layers MP layers Post layers Connectivity AGG

Task 𝐴 2 8 2 skip-sum sum
Task 𝐵 1 8 2 skip-sum sum
Task 𝐶 2 6 2 skip-cat mean

PCA

Similar tasks have similar 
best architectures

Group 1Group 2



¡ Case study: generalize best models to unseen
OGB ogbg-molhiv task:
§ ogbg-molhiv is unique from other tasks: 20x 

larger, imbalanced (1.4% positive) and requires 
out-of-distribution generalization
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¡ Concrete steps for applying to a novel task:
§ Step 1: Measure 12 anchor model performance 

on the new task
§ Step 2: Compute similarity between the new 

task and existing tasks
§ Step 3: Recommend the best designs from 

existing tasks with high similarity
Task !

Task "



¡ Our task space can guide best model transfer 
to novel tasks!
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Task !

Task " Task 𝑨: graph-
scalefree-const-path

Task 𝑩: node-
CoauthorPhysics

Best design 
in our design space (1, 8, 3, skipcat, sum) (1, 4, 2, skipcat, max)

Task Similarity 
with ogbg-molhiv 0.47 -0.61
Performance after 

transfer to ogbg-molhiv 0.785 0.736

Task A: Similar to OGB
Task B: Not similar to OGB

Transfer the best model from Task A achieves 
SOTA on OGB
Transfer the best model from Task B performs 
badly on OGB

Previous SOTA: 0.771

Findings:
We pick 2 tasks:



¡ Systematic investigation of:
§ General guidelines for GNN design
§ Understandings of GNN tasks
§ Transferring best GNN designs across tasks
§ GraphGym: Easy-to-use code platform for GNN
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(a) GNN Design Space (b) GNN Task Space

Best GNN Designs Found in Different Tasks
Pre layers MP layers Post layers Connectivity AGG

Task ! 2 8 2 skip-sum sum
Task " 1 8 2 skip-sum sum
Task # 2 6 2 skip-cat mean

! " #

GNN Design Space GNN Task Space
BatchNorm Act … MP layers Connectivity level dataset

True relu … 8 skip_sum node CiteSeer
False relu … 8 skip_sum node CiteSeer
True relu … 2 skip_cat graph BZR
False relu … 2 skip_cat graph BZR

…

Experimental Results
Val. 

Accuracy
Design Choice 

Ranking
0.75 1
0.54 2
0.88 1 (a tie)
0.86 1 (a tie)

…

(c) Controlled Random Search

(e) Ranking Analysis(d) Rank Design Choices 
by Performance

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf
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¡ Chemistry: Molecular graphs
§ Molecular property prediction

¡ Biology: Protein-protein association graphs
§ Protein function prediction
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f(          )

f(          )

= toxic?

= biological activity?

Our running 
example today



¡ GNNs obtain an embedding of an entire graph 
by following two steps
§ Iteratively aggregate neighboring information to 

obtain node embeddings
§ Pool node embeddings to obtain a graph 

embedding
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Molecule

Iterative neighbor 
aggregation

𝑾 toxic?
Pool



¡ Node embeddings capture local 
neighborhood structure

¡ The embedding of an entire graph is a global 
aggregation of such node embeddings
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Molecule

Capture local 
neighborhood 
structure

Globally-
aggregate 
local features



¡ Two fundamental challenges in applying ML 
to scientific domains

1. Scarcity of labeled data
§ Obtaining labels requires expensive lab 

experiments
à ML models overfit to small training data

2. Out-of-distribution prediction
§ Test examples tend to be very different from 

training examples
à ML models extrapolate poorly
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¡ Deep learning models have a lot parameters 
to train (e.g., in the order of millions).

¡ #(Labeled training data) << #(Parameters)
¡ Deep learning models are extremely prone to 

overfitting on small labeled data.
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¡ Deep learning models extrapolate poorly
§ Models often make predictions based on spurious 

correlations in a dataset [Sagawa et al. ICML 2020]

§ Ex) Image classification between “polar bear” and 
“brown bear” 

§ During training: 
§ Most “polar bears” have the snow background
§ Most “brown bears” have the grass background
§ Model can learn to make prediction based on the image 

background, rather than the animal itself.

§ At test time, what if we see “polar bear” on the grass?
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Adapted from 
Wikipedia



¡ Goal: Improve model’s out-of-distribution 
prediction performance even with limited data.

¡ Key idea: Inject domain knowledge into a model 
before training on scarcely-labeled tasks!
§ The model already knows the domain knowledge 

before training on data
§ So that the model can

§ Generalize well without many task-specific labeled data
§ Extract essential (non-spurious) pattern that allows 

better extrapolation.
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¡ We pre-train a model on relevant tasks, where 
data is abundant.
§ After pre-training, the model parameters already 

contain domain knowledge.
¡ For downstream tasks (what we care about, 

typically with small #labeled data) 
§ We start from the pre-trained parameters and fine-

tuning them.
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Output 
embedding

Model

Raw 
input

𝜽

Pre-training 

Model

𝜽!"#

Fine-tuning on 
downstream tasks 



¡ Pre-training has been hugely successful in 
computer vision and natural language 
processing.
§ Pre-training improves label-efficiency.
§ Pre-training improves out-of-distribution 

performance [Hendrycks et al. ICML 2019]

¡ Pre-training is a powerful solution to the two 
ML challenges in scientific applications
§ Scarce labels
§ Out-of-distribution prediction
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¡ Let’s consider pre-training GNNs!
¡ We design GNN pre-training strategies and 

systematically investigate

Q1. How effective is pre-training GNNs?

Q2. What is the effective pre-training strategy?
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Hu et al. ICLR 2020



Let’s think about molecular property prediction 
for drug discovery.
¡ Naïve strategy
Multi-task supervised pre-training on relevant labels.
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Toxicity A?

Molecule

Iterative neighbor 
aggregation

Pool

Diverse labels
from chemical database 

Toxicity B?

Bioactivity A?

Bioactivity B?

⋯
⋯



¡ Molecule classification
§ Task: Binary classification. ROC-AUC as metric

§ Supervised pre-training data
§ 1310 diverse binary bioassays annotated over ~450K 

molecules

§ Downstream task (what we care about!)
§ 8 molecular classification datasets (relatively-small, 1K—

100K molecules)

§ Data split: Scaffold (test molecules are out-of-
distribution)
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f(          ) = {0,1}



¡ Naïve strategy:
Multi-task supervised pre-training on relevant labels.
à Limited performance improvement on downstream 
tasks. Often leads to negative transfer
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¡ Key idea: Pre-train both node and graph 
embeddings.

à GNN can capture domain-specific knowledge of 
both local and global structure
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Capture local 
neighborhood 
structure

Capture 
Global 
structure

Pre-training on node labels 

Toxicity A?

Toxicity B?

Bioactivity A?

Bioactivity B?⋯
⋯

Pre-training on 
graph labels



¡ Key idea: Pre-train both node and graph 
embeddings.
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Self-supervised
(No need for 
external labels)



¡ Mask node attributes
¡ Use GNNs to generate node embeddings.
¡ Use the embeddings to predict masked 

attributes.
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Intuition
¡ Through solving the masked attribute 

prediction task, a GNN is forced to learn 
domain knowledge, .e.g., chemical rules.
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¡ For each graph, sample one center node.
¡ Extract neighborhood and context graphs.
¡ Use GNNs to encode neighborhood and context 

graphs into vectors.
¡ Maximize/minimize the inner product between 

true/false (neighborhood, context) pairs.
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¡ Intuition
Subgraphs that are surrounded by similar 
contexts are semantically similar.
§ In natural language processing, this is called 

distributional hypothesis, and is exploited in the 
word2vec model [Mikolov et al. NIPS 2013].
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¡ Multi-task supervised training on many 
relevant labels.
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Toxicity A?

Toxicity B?

Bioactivity A?

Bioactivity B?⋯
⋯

Pre-training on 
graph labels

Iterative neighbor 
aggregation



1. Node-level pre-training
2. Graph-level pre-training
3. Fine-tuning on downstream tasks
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GNN

Self-supervised 
node-level pre-training

Supervised graph-level
pre-training

Node pre-train
Downstream 
task 1

Downstream 
task N

Fine-tune

1

2

3

Graph pre-train
Toxicity A?

Toxicity B?

Bioactivity A?

Bioactivity B?

⋯



¡ Avoids negative transfer.
¡ Significantly improve the performance.
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¡ When different GNN models are pre-trained, 
the most expressive model (GIN) benefits the 
most from pre-training.

¡ Intuition: Expressive model can learn to 
capture more domain knowledge than less 
expressive models.
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Published as a conference paper at ICLR 2020

Dataset BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE Average
# Molecules 2039 7831 8575 1427 1478 93087 41127 1513 /

# Binary prediction tasks 1 12 617 27 2 17 1 1 /
Pre-training strategy Out-of-distribution prediction (scaffold split)Graph-level Node-level

– – 65.8 ±4.5 74.0 ±0.8 63.4 ±0.6 57.3 ±1.6 58.0 ±4.4 71.8 ±2.5 75.3 ±1.9 70.1 ±5.4 67.0
– Infomax 68.8 ±0.8 75.3 ±0.5 62.7 ±0.4 58.4 ±0.8 69.9 ±3.0 75.3 ±2.5 76.0 ±0.7 75.9 ±1.6 70.3
– EdgePred 67.3 ±2.4 76.0 ±0.6 64.1 ±0.6 60.4 ±0.7 64.1 ±3.7 74.1 ±2.1 76.3 ±1.0 79.9 ±0.9 70.3
– AttrMasking 64.3 ±2.8 76.7 ±0.4 64.2 ±0.5 61.0 ±0.7 71.8 ±4.1 74.7 ±1.4 77.2 ±1.1 79.3 ±1.6 71.1
– ContextPred 68.0 ±2.0 75.7 ±0.7 63.9 ±0.6 60.9 ±0.6 65.9 ±3.8 75.8 ±1.7 77.3 ±1.0 79.6 ±1.2 70.9

Supervised – 68.3 ±0.7 77.0 ±0.3 64.4 ±0.4 62.1 ±0.5 57.2 ±2.5 79.4 ±1.3 74.4 ±1.2 76.9 ±1.0 70.0
Supervised Infomax 68.0 ±1.8 77.8 ±0.3 64.9 ±0.7 60.9 ±0.6 71.2 ±2.8 81.3 ±1.4 77.8 ±0.9 80.1 ±0.9 72.8
Supervised EdgePred 66.6 ±2.2 78.3 ±0.3 66.5 ±0.3 63.3 ±0.9 70.9 ±4.6 78.5 ±2.4 77.5 ±0.8 79.1 ±3.7 72.6
Supervised AttrMasking 66.5 ±2.5 77.9 ±0.4 65.1 ±0.3 63.9 ±0.9 73.7 ±2.8 81.2 ±1.9 77.1 ±1.2 80.3 ±0.9 73.2
Supervised ContextPred 68.7 ±1.3 78.1 ±0.6 65.7 ±0.6 62.7 ±0.8 72.6 ±1.5 81.3 ±2.1 79.9 ±0.7 84.5 ±0.7 74.2

Table 1: Test ROC-AUC (%) performance on molecular prediction benchmarks using different
pre-training strategies with GIN. The rightmost column averages the mean of test performance
across the 8 datasets. The best result for each dataset and comparable results (i.e., results within one
standard deviation from the best result) are bolded. The shaded cells indicate negative transfer, i.e.,
ROC-AUC of a pre-trained model is worse than that of a non-pre-trained model. Notice that node- as
well as graph-level pretraining are essential for good performance.

Chemistry Biology
Non-pre-trained Pre-trained Gain Non-pre-trained Pre-trained Gain

GIN 67.0 74.2 +7.2 64.8 ± 1.0 74.2 ± 1.5 +9.4
GCN 68.9 72.2 +3.4 63.2 ± 1.0 70.9 ± 1.7 +7.7

GraphSAGE 68.3 70.3 +2.0 65.7 ± 1.2 68.5 ± 1.5 +2.8
GAT 66.8 60.3 -6.5 68.2 ± 1.1 67.8 ± 3.6 -0.4

Table 2: Test ROC-AUC (%) performance of different GNN architectures with and without
pre-training. Without pre-training, the less expressive GNNs give slightly better performance
than the most expressive GIN because of their smaller model complexity in a low data regime.
However, with pre-training, the most expressive GIN is properly regularized and dominates the other
architectures. For results split by chemistry datasets, see Table 4 in Appendix H. Pre-training strategy
for chemistry data: Context Prediction + Graph-level supervised pre-training; pre-training strategy
for biology data: Attribute Masking + Graph-level supervised pre-training.

use a 3-layer GNN to encode the context structure. For Attribute Masking shown in Figure 2 (b),
we randomly mask 15% of node (for molecular graphs) or edge attributes (for PPI networks) for
prediction. As baselines for node-level self-supervised pre-training, we adopt the original Edge
Prediction (denoted by EdgePred) (Hamilton et al., 2017a) and Deep Graph Infomax (denoted by
Infomax) (Veličković et al., 2019) implementations. Further details are provided in Appendix G.

5.3 RESULTS

We report results for molecular property prediction and protein function prediction in Tables 2 and 1
and Figure 3. Our systematic study suggests the following trends:

Observation (1): Table 2 shows that the most expressive GNN architecture (GIN), when pre-trained,
achieves the best performance across domains and datasets. Compared with gains of pre-training
achieved by GIN architecture, gains of pre-training using less expressive GNNs (GCN, GraphSAGE,
and GAT) are smaller and can sometimes even be negative (Table 2). This finding confirms previous
observations (e.g., Erhan et al. (2010)) that using an expressive model is crucial to fully utilize
pre-training, and that pre-training can even hurt performance when used on models with limited
expressive power, such as GCN, GraphSAGE, and GAT.

Observation (2): As seen from the shaded cells of Table 1 and highlighted region in the middle panel
of Figure 3, the strong baseline strategy that performs extensive graph-level multi-task supervised
pre-training of GNNs gives surprisingly limited performance gain and yields negative transfer on
many downstream tasks (2 out of 8 datasets in molecular prediction, and 13 out of 40 tasks in protein
function prediction).
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¡ GNNs have important applications in scientific 
applications, but they present challenges of
§ Label scarcity
§ Out-of-distribution prediction

¡ Pre-training is promising to tackle the challenges.
¡ However, naïve pre-training strategy gives sub-

optimal performance and even leads to negative 
transfer.

¡ Our strategy: Pre-train both node and graph 
embeddings à Leads to significant performance 
gain on downstream tasks.
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Images

Text/Speech

Modern deep learning toolbox is designed 
for simple sequences & grids
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How can we develop neural networks 
that are much more broadly 

applicable?

Graphs are the new frontier 
of deep learning
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Knowledge Graphs
Image credit: Maximilian Nickel et al

3D Shapes
Image credit: Wikipedia

Code Graphs
Image credit: ResearchGate

Molecules
Image credit: MDPI

Scene Graphs
Image credit: math.hws.edu

Regulatory Networks
Image credit: ese.wustl.edu

Main question:

How do we take advantage of 
relational structure for better 

prediction?
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https://arxiv.org/abs/1503.00759
https://en.wikipedia.org/wiki/Triangle_mesh
https://www.researchgate.net/figure/Static-call-graph-for-Figure-1-Callsites-are-labeled-with-their-line-number-in-the-code_fig1_220751974
https://www.mdpi.com/2078-2489/1/2/60/htm
http://math.hws.edu/graphicsbook/c2/s4.html
https://www.ese.wustl.edu/~nehorai/research/genomic/grn.html
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…
z

Input: Network

Predictions: Node labels, 
New links, Generated 
graphs and subgraphs 
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¡ There is exciting relational structure in many 
many real-world problems
§ Molecules/Proteins as strings vs. graphs
§ Travel time duration over the map graph

¡ Identifying and harnessing this relational 
structure leads to better predictions
§ AlphaFold
§ Biomedicine
§ Recommender systems
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¡ Theory:
§ Models, architectures, approaches

¡ Practice:
§ Collab notebooks
§ Homeworks

¡ Creative research:
§ Course project

¡ The real-world use cases and applications
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¡ Project write-ups:
§ Thurs Dec. 14, Midnight (11:59PM) Pacific Time

¡ Courses:
¡ CS246: Mining Massive Datasets (Spring)
§ Data Mining & Machine Learning for big data

§ (big==doesn’t fit in memory/single machine)
§ Fast clever algorithms for real-world problems
§ Distributed data processing frameworks: 

MapReduce, Spark
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No late days!
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¡ You Have Done a Lot!!!
¡ And (hopefully) learned a lot!!!
§ Answered questions and 

proved many interesting results
§ Implemented a number of methods
§ And did excellently on the project!

Thank You for the
Hard Work!!!
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